初中数学竞赛第二轮专题复习(4)几何(8)

发布时间:2021-06-06

例7 如图3-109.等边△ABC内接于△XYZ,A在YZ上,B在ZX上,C在XY上,证明:

证 对四边形ABXC运用托勒密定理,得

AX·BC≤BX·AC+XC·AB,

所以

AX≤BX+XC.

同样地

BY≤CY+YA,CZ≤AZ+ZB.

将上述三式相加就得所要证明的不等式.

等号成立的充分必要条件是X,Y,Z在△ABC的外接圆上,但∠ZBX,∠XCY,∠YAZ都等于π,因此等号成立只能是X,Y,Z分别与C,A,B重合的情况.

平面几何中的著名定理,除了上述所介绍的梅内劳斯定理、塞瓦定理、斯台沃特定理、托勒密定理外,还有斯泰纳-莱默斯定理、西姆松定理、蝴蝶定理、莫莱定理等等.这里,限于篇幅,因此不作讨论.

练习十九

1.已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D.求证:D,E,F共线.

2.过△ABC的三个顶点A,B,C分别作△ABC的外接圆的切线,分别和BC,CA,AB的延长线交于D,E,F.求证:D,E,F三点共线.

3.在△ABC的边BC上任取一点D,设∠ADB和∠ADC的角平分线分别交AB,AC于F和E.求证:AD,BE,CF相交于同一点.

4.在梯形ABCD中,AB∥DC,AD⊥BD,DC=3,BC=7,DA=8,求AB,BD和AC的长.

PA(PA+PC)=PB(PB+PD).

6.设P是等边三角形ABC所在平面上的任意一点,那么根据P

PC+PA=PB或PC+PA>PB.

初中数学竞赛第二轮专题复习(4)几何(8).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219