初中数学竞赛第二轮专题复习(4)几何(3)

发布时间:2021-06-06

例2(戴沙格定理) 在△ABC和△A′B′C′中,若AA′,BB′,CC′相交于一点S,则AB与A′B′,BC与B′C′,AC与A′C′的交点F,D,E共线.

证 如图3-100,直线FA′B′截△SAB,由梅内劳斯定理有

同理,直线EC′A′和DC′B′分别截△SAC和△SBC,得

将这三式相乘得

所以D,E,F共线. 2.塞瓦定理

意大利数学家塞瓦(G.Ceva)在1678年发表了下面的十分有用的定理,它是证明共点线的重要定理.

定理 在△ABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB相交于D,E,F,则

证 如图3-101,过B,C分别作直线AP的垂线,设垂足为H和K,则

初中数学竞赛第二轮专题复习(4)几何(3).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219