第十章 spss教程之分类分析(3)
发布时间:2021-06-06
发布时间:2021-06-06
spss教程
对话框(如图10.1示)。从对话框左侧的变量列表中选x1、x2、x3、x4,点击 钮使之进入Variables框;在Number of Clusters(即聚类分析的类别数)处输入需要聚合的组数,本例为4;在聚类方法上有两种:Iterate and classify指先定初始类别中心点,而后按K-means算法作叠代分类,Classify only指仅按初始类别中心点分类,本例选用前一方法。
图10.1 逐步聚类分析对话框
为在原始数据库中逐一显示分类结果,点击Save...钮弹出K-Means Cluster:Save New Variables对话框,选择Cluster membership项,点击Continue钮返回K-Means Cluster Analysis对话框。 本例还要求对聚类结果进行方差分析,故点击Options...钮弹出K-Means Cluster:来Options对话框,在Statistics栏中选择ANOVA table项,点击Continue钮返回K-Means Cluster Analysis对话框,再点击OK钮即完成分析。
10.1.2.3 结果解释 在结果输出窗口中将看到如下统计数据: 首先系统根据用户的指定,按4类聚合确定初始聚类的各变量中心点,未经K-means算法叠代,其类别间距离并非最优;经叠代运算后类别间各变量中心值得到修正。
spss教程
之后对聚类结果的类别间距离进行方差分析,方差分析表明,类别间距离差异的概率值均<0.001,即聚类效果好。这样,原有19类(即原有的19个月份分组)聚合成4类,第一类含原有1类,第二类含原有1类,第三类含原有2类,第四类含原有15类。具体结果系统以变量名QCL_1存于原始数据库中。
上一篇:片段教学色彩的冷与暖