q-Euler Numbers and Polynomials Associated with Basic Zeta F(6)
发布时间:2021-06-06
发布时间:2021-06-06
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
6q-ANALOGUEOFRIEMANNZETAFUNCTION
3.q-analogsofzetafunctions
Inthissection,weassumeq∈Rwith0<q<1.Nowweconsidertheq-extensionoftheEulerzetafunctionasfollows:
∞ns
nq( 1)ζq,E(s)=[2]q
n=1
[n+x]sq
.
Notethatζq,E(s,x)isananalyticcontinuationinwholecomplexs-plane.
By(14)andTheorem1,wehavethefollowingtheorem.Theorem4.Foranypositiveintegerk,wehave(15)
ζq,E( k,x)=Ek,q
( k,1)
(x,q).
Ford∈Nwithd≡1(mod2),letχbeDirichletcharacterwithconductord.By(13),thegeneralizedq-Eulernumbersattachedtoχcanbede nedas(16)
( m,1)Em,χ,q=
[2]q
d
).
Fors∈C,wede ne(17)
Lq,E(s,χ)=[2]q
∞ χ(n)( 1)nqsn
n=1
[2]qd
s
[d] q
a=1
d
χ(a)( 1)aqsaζqd,E(s,
a
下一篇:JSYPT2015选题