q-Euler Numbers and Polynomials Associated with Basic Zeta F(5)
发布时间:2021-06-06
发布时间:2021-06-06
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
5
By(3),(8),weeasilysee:
∞
Fq(t,x)=[2]q
(9)
k=0
1
1+qj k.
k
t
k!
Di erentiatingbothsideswithrespecttotin(5),(6)andcomparingcoe cients,
weobtainthefollowing:
Theorem1.Form≥0,wehave(10)
( m,1)Em,q(x)=[2]q
∞
n
q nm[n+x]mq( 1).
n=0
Corollary2.Letm∈N.Thenthereexists(11)
( m,1)
Em,q=[2]q
∞
n
q nm[n]mq( 1),andE0,q
(0,1)
=
[2]q
n=1
[2]qd[2]qd
[d]mq[d]mq
d 1 i=0d 1 i=0
q mi( 1)iχ(i)
q dx(m+1)[
( m,1)
i
Zp
χ(i)( 1)iq miEm,qd(
i
下一篇:JSYPT2015选题