q-Euler Numbers and Polynomials Associated with Basic Zeta F(3)
发布时间:2021-06-06
发布时间:2021-06-06
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
3
From(1),wecanderive
( m,k)Em,q
(2)
=lim
1
m m
( 1)iii=0
N→∞
1
(1 q)m
et+1
k
=
n=0
∞
(k)tEn
n
(1 q)m
m
m
( 1)jqjx
jj=0
1
[n]sq
,q∈Rwith0<q<1ands∈C.
Thenumeratorensurestheconvergence.In(4),wecanconsiderthefollowingproblem:
“Arethereq-Eulernumberswhichcanbeviewedasinterpolatingofζq,E(s)atnegativeintegers,inthesamewaythatRiemannzetafunctioninterpolatesBernoullinumbersatnegativeintegers”?
Inthispaper,wegivethevalueζq,E( m),form∈N,whichisaansweroftheaboveproblemandconstructanewcomplexq-analogueofHurwitz’stypeEulerzetafunctionandq-L-seriesrelatedtoq-Eulernumbers.Also,wewilltreatsomeinterestingidentitiesofq-Eulernumbers.
下一篇:JSYPT2015选题