q-Euler Numbers and Polynomials Associated with Basic Zeta F(2)
发布时间:2021-06-06
发布时间:2021-06-06
In this paper we give the q-extension of Euler numbers which can be viewed as interpolating of the q-analogue of Euler zeta function ay negative integers, in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Final
2q-ANALOGUEOFRIEMANNZETAFUNCTION
Notethatlimq→1[x]q=xforx∈Zpinpresentedp-adiccase.
LetUD(Zp)bedenotedbythesetofuniformlydi erentiablefunctionsonZp.Forf∈UD(Zp),letusstartwiththeexpression
1
[pN] q
0≤j<pN
f(j)( q)j,(see[5,6,16]).
Forda xedpositiveintegerwith(p,d)=1,let
N
X=Xd=←lim Z/dpZ,X1=Zp,
N
X=
0<a<dp
(a,p)=1
a+dpZp,
a+dpNZp={x∈X|x≡a(moddpN)},
wherea∈Zliesin0≤a<dpN,(see[1-30]).
LetNbethesetofpositiveintegers.Form,k∈N,theq-Eulerpolynomials( m,k)Em(x,q)ofhigherorderinthevariablesxinCpbymakinguseofthep-adicq-integral,cf.[5,6],arede nedby
( m,k)
(1)Em,q(x)=
Zp
···
Zp
Zp
[x+x1+x2+···+xk]mq
·q
ktimes
x1(m+1) x2(m+2) ··· xk(m+k)
dµ q(x1)dµ q(x2)···dµ q(xk).
Now,wede netheq-Eulernumbersofhigherorderasfollows:
( m,k)( m,k)Em,q=Em,q(0).
下一篇:JSYPT2015选题