1.2.1锐角三角函数(第一课时)说课稿.doc111(2)
时间:2025-07-08
时间:2025-07-08
二.说教学过程的设计:
为了达到以上的教学目标,根据高中高考纲考标的要求以及学生的接受能力,我采用逐层推进与类比结合的方式来实施整个教学过程。
(—)说课前引入:
由直角三角形为载体来复习锐角三角函数的定义且由上节课已学习锐角推广到任意角,让学生提出猜想任意角是否也有三角函数?从而达到自然过渡之目的。
(二)说教学过程:
问题一:
初中锐角的三角函数是如何定义的?
在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次是
对边邻边对边ba(图1sA ,tanA ccbsinα=斜边 ,conα=斜边 ,tanα=邻边 .
设计意图:学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展). 温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.
问题二:
你能用直角坐标系中的角的终边上的点的坐标来表示三角函数吗?
为了研究方便,我们把锐角α放到直角坐标系中,并使角α的顶点与原点O重合,始边与x轴的非负半轴重合.
在角α的终边上取一点P(a,b),设点P与原点的距离po为 r ,那么,sinα,cosα,tanα的值分别如何表示?
(比值)表
示锐角三角函数。
设计意图:此处做法简单,思想重要. 为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形. 由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数. 初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义. 这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).
上一篇:FAA01DM24中文资料
下一篇:立式电热水器的控制方法