信号与系统(杨晓非)1,2,3章习题答案(14)
发布时间:2021-06-05
发布时间:2021-06-05
重邮 信号与系统考试答案 考研必备
y'' 2y' 2y f',y'(0 ) 1,y(0 ) 0,f (t)解:1.求yx(t)
2 2 2 0, 1,2 1 j
yx(t) e t(Cx1cost Cx2sint)
y'x(t) e t(Cx2cost Cx1sint) e t(Cx1cost Cx2sint)代入初始状态:yx(0 ) Cx1 0,y'x(0 ) Cx2 1 yx(t) e tsint2.求yf(t)
t 0
0
0
首先确定y'f(0 )与yf(0 )
0 0
0
0
0
0
yf''dt 2 yf'dt+2 yfdt= (t)dt
可得y'f(0 ) y'f(0 ) 1,yf(0 ) yf(0 ) 0; y'f(0 ) 1则 yf'' 2yf' 2yf (t)
y(0) 0 f
当t 1时,yf'' 2yf' 2yf 0 yf(t) e t(Acost sint)
代入初始条件:y'f(0 ) B 1,yf(0 ) A 0 yf(t) e tsint (t)3.求全响应y(t)y(t) yx yf 2e tsint
t 0
2.4 (1)y(k+2)+3y(k+1)+2y(k)=0,yx(0) 2,yx(1) 1 解:特征方程r 3r 2 0 (r+1)(r+2)=0 特征根: r1 1,r2 2
y(k)=Cx1r1 Cx2r2 Cx1( 1) Cx2( 2) 代入初始条件
k
k
k
k
2
Cx1 Cx2 2
解得Cx1 5,Cx2 3
C 2C 1x2 x1
yx(k) 5( 1)k 3( 2)k k 0
(2)y(k+2)+2y(k+1)+2y(k)=0. 解:
yx(0) 0,yx(1) 1.
上一篇:浅论未成年人犯罪预防