抛物线的定义和标准方程

发布时间:2021-06-05

抛物线的定义和标准方程

抛物线的定义和标准方程

教学目标:

1、使学生掌握抛物线的定义,开口向右的抛物线的标准方程的推导过程。进一步得出开口向左、向上、向下的抛物线的标准方程。

2、熟练掌握抛物线的四种标准方程及其所对应的开口方向、焦点坐标、准线方程之间的关系;

3、能根据已知条件熟练地求出抛物线的标准方程,进一步培养学生在解决数学问题时进行观察、类比、猜想、分析、计算的能力。 教学重点和难点:

重点:抛物线的定义;根据具体条件求出抛物线的标准方程;根据抛物线的标准方程求出焦点坐标、准线方程。

难点:抛物线的标准方程的推导。 教学过程: 一、复习提问:

1、已知轨迹条件,怎样建立轨迹方程? (答:已知曲线,求方程的一般步骤如下:

(1)建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标; (2)写出曲线上的点M所要适合的条件 ;

(3)用点M的坐标表示这个条件,得出方程f (x,y)=0; (4)把方程f (x,y)=0化简;

(5)证明化简后的方程就是所求的曲线方程。

如果方程化简的每一步都同解,那么最后一步证明可以省略。)

2、在平面内到一定点的距离和到一条定直线距离的比是常数e 的点的轨迹, 当e < 1时是什么图形?(椭圆) 当e > 1时是什么图形?(双曲线)

精彩图片

热门精选

大家正在看