图形的变化规律教学设计(共19篇)(图形的变化规律数学)(4)
时间:2025-05-15
时间:2025-05-15
教学准备:
多媒体课件、学习卡。
教材分析:
例题的设计分为三个层次:
①研究问题:教材设计了两组既有联系又有区别的乘法算式,引导学生在观察、计算、对比的基础上自主发现因数变化引起积的变化规律。 ②归纳规律:引导学生广泛交流自己发现的规律,在小组交流的.基础上尝试用简洁的语言说明积的变化规律。
③验证规律:引导学生再举倒,验证积的变化规律的正确性。
教学过程:
一、做游戏、激趣启思。
师:同学们,在学习新内容之前,我们先来做几道题好吗?(课件演示)
先找规律,再计算:
110+120+130+140+150=( )×( )
497+498+499+500+501+502+503=( )×( )
220+230+240+250=( )×( )
学生尝试回答,教师启发学生说出计算过程中发现的规律。
师:刚才这几位同学都顺利回答了问题,他们都善于观察,肯动脑筋思考,发现规律。其实,在我们的生活和学习中有许多规律等着我们去发现。这节课,就让我们一起用自己的慧眼来观察,找规律,一起去探究乘法中积的变化规律,好吗?(出示课题)
二、创设情境,自主探究。
㈠、创设情境:
课件出示:星期天,小明和妈妈一起去超市购物。小明的妈妈来到副食柜前,她准备买一些大米回家。妈妈提出问题考考小明:
㈡研究问题、发现规律:
1 、出示问题:
①大米每包6元,如果买2包,一共多少元?
②大米每包6元,如果买20包,一共多少元?
③大米每包6元,如果买200包,一共多少元?
2 、学生口头列式并计算:
6 × 2=12 (元)
6 × 20=120(元)
6 × 200=1200(元)
3 、引导学生进行观察、讨论:
①第一个因数变化了没有?(没有)第二个因数变化了没有?(变化了)积变化了没有?(变化了)
②把第2组的第二个因数同第一组的比较,乘以几了(乘10)?积有什么变化?(也乘10了)再把第三组的第二个因数同第一组的比较,乘以几了?(乘100了)积又有什么变化规律?(积也乘100了)③从这里你发现了什么规律?(一个因数不变,另一个因数越变越大,积也越变越大。)
④你能把发现的规律用一句话来说一说吗?
小结:一个因数不变,另一个因数乘以几,积也乘以几。
4 、出示问题:
①大包每包20元,4包一共多少元?
②中包每包10元,4包一共多少元?
③小包每包5元,4包一共多少元?
5 、学生口头列式并计算:
20 × 4=80(元)
10 × 4=40(元)
5 × 4=20(元)
6 、引导学生进行观察、讨论:
①第一个因数变化了没有?(变化了)第二个因数变化了没有?(没有)积变化了没有?(变化了)
②把第2组的第一个因数同第一组的比较,除以几了(除以2了)?积有什么变化?(积也除以2了)再把第三组的第一个因数同第一组
的比较,除以几了?(除以4了)积又有什么变化规律?(积也除以4了)
③从这里你发现了什么规律?(一个因数不变,另一个因数除以几,积也除以几。)
④你能把发现的规律用一句话来说一说吗?
小结:一个因数不变,另一个因数除以几,积也除以几。
㈣验证规律:
(1)谈话:刚才大家发现的规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,要再举一例子,看看会不会出现相同的情况。如果有一个例子出现了不同的情况,就不能把这种发现当作规律,这就是研究数学问题应该持有的严谨的态度。下面每人也像例题这样,自己写出因数,设计因数的变化,用计算器算出积,算出积的变化。再看看是否具有相同的变化规律。
(2)分组安排:(四人一组)
师询问哪些同学愿意研究第一个猜想(乘)、哪些同学愿意研究第二个猜想(除),进行分工安排。
17×12= 25×160=
17×24= 25×40=
17×36= 25×10=
8×125= 26×48=
24×125= 26×24=
72×125= 26×12=
在举例时对于所用的数据你有什么想提醒大家注意的?(所选数据要方便扩大与缩小)教师巡视指导,对有困难的学生给予帮助。
(3)学生操作
以一题为例,思考并在表中填写出你准备将因数作怎样的变化,计算积后再与原来的积相比,看看有什么变化。
(4)展示交流:
教师请两组同学分别介绍自己的操作情况,说说因数和相应的积各有怎样的变化。
我们发现的规律在这里也存在吗?在你所举的例子中也存在吗?㈤概括规律:
师:发现我们举了很多的例子,确实存在着刚才同学们讲到的规律,谁能把这个规律完整的表述?
同桌互说规律。教师根据学生回答完成板书:
一个因数不变,另一个因数乘(或除以)一个数,积也乘(或除以)相同的数。
㈥应用规律:
完成例4下面的做一做和练习九第1 ― 4题。
㈦积的变化规律探索的继续。
出示练习九第5题。
算一算,想一想。你能发现什么规律?
18 ×24=432
105 × 45=4725
(18÷2)×(24×2)=(105 ×3)×(45÷3)=(18×2)×(24÷2)=(105÷5)×(45×5)=
1.初步了解商的变化规律:在除法中被除数不变除数逐渐扩大商逐渐缩小;除数不变被除数逐渐扩大商也逐 …… 此处隐藏:1631字,全部文档内容请下载后查看。喜欢就下载吧 ……