双曲线及其标准方程练习题答案及详解(3)
时间:2025-05-01
时间:2025-05-01
11.双曲线的焦点在x轴上,且经过点M(3,2)、N(-2,-1),则双曲线标准方程是________.12.过双曲线-=1的焦点且与x轴垂直的弦的长度为________.
13.如果椭圆+=1与双曲线-=1的焦点相同,那么a=________.
14.一动圆过定点A(-4,0),且与定圆B:(x-4)2+y2=16相外切,则动圆圆心的轨迹方程为
________.
三、解答题
15.设双曲线与椭圆+=1有共同的焦点,且与椭圆相交,在第一象限的交点A的纵坐标为4,求
此双曲线的方程.
16.已知双曲线x2-=1的焦点为F1、F2,点M在双曲线上且·=0,求点M到x轴的距离.
答案及详解
1、D
2、A由题意得(1+k)(1-k)>0,∴(k-1)(k+1)<0,∴-1<k<1.
3、A设动圆半径为r,圆心为O,x2+y2=1的圆心为O1,圆x2+y2-8x+12=0的圆心为O2,
由题意得|OO1|=r+1,|OO2|=r+2,∴|OO2|-|OO1|=r+2-r-1=1<|O1O2|=4,
由双曲线的定义知,动圆圆心O的轨迹是双曲线的一支.
4、B由题意知双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,双曲线方程为y2-=1.
5、C ab<0曲线ax2+by2=1是双曲线,曲线ax2+by2=1是双曲线ab<0.
6、C ∵c=,|PF1|2+|PF2|2=|F1F2|2=4c2,∴(|PF1|-|PF2|)2+2|PF1|·|PF2|=4c2,
∴4a2=4c2-4=16,∴a2=4,b2=1.
7、A 验证法:当m=±1时,m2=1,对椭圆来说,a2=4,b2=1,c2=3.
对双曲线来说,a2=1,b2=2,c2=3,故当m=±1时,它们有相同的焦点.
直接法:显然双曲线焦点在x轴上,故4-m2=m2+2.∴m2=1,即m=±1.
8、D由双曲线的定义知,点P的轨迹是以F1、F2为焦点,实轴长为6的双曲线的右支,其方程
为:-=1(x>0)
9、D|AF2|-|AF1|=2a=8,|BF2|-|BF1|=2a=8,∴|AF2|+|BF2|-(|AF1|+|BF1|)=16,
∴|AF2|+|BF2|=16+5=21,∴△ABF2的周长为|AF2|+|BF2|+|AB|=21+5=26.
10、A设点P为双曲线右支上的点,由椭圆定义得|PF1|+|PF2|=2,
由双曲线定义得|PF1|-|PF2|=2.∴|PF1|=+,|PF2|=-,∴|PF1|·|PF2|=m-a.
11、-=1
12、∵a2=3,b2=4,∴c2=7,∴c=,该弦所在直线方程为x=,
下一篇:资产评估例题