M-theory on G_2 manifolds and the method of (p,q) brane webs(9)
发布时间:2021-06-11
发布时间:2021-06-11
M-theory on G_2 manifolds and the method of (p,q) brane webs
SinceC2/U(1)=R×S2,thisquotientspaceisnowisomorphictoanR×S2bundleoveraV2.Similarlyto[25],equation(3.6)describesrealconesonaS2bundleoverV2.Mathematically,itisnoteasytorevealthatthesequotientspaceshaveG2holonomygroup.However,onecanshowthisusingaphysicalargument.Indeed,V2,withh1,0=h2,0=0,preserves1/4ofinitialsuperchargesandinthepresenceofS2itshouldbe1/8.Inthisway,thesupersym-metrytellsusthattheholonomyof(3.6)istheG2Liegroup.Thus,M-theoryontheaboveseven-dimensionalmanifoldleadstoN=1theoryinfourdimensions.
3.2ExplicitmodelsfromV2geometries
Tobetterunderstandthestructureof(3.3-6),letusgiveillustratingmodels.InparticularwewillconsiderspecialmodelscorrespondingtoN=4sigmamodelwithconformalinvariance.Forthisreason,wewillrestrictourselvestoeight-dimensionaltoricHKmanifoldsX8withtheCalabi-Yaucondition(2.10)inN=4supersymmetricanalysis.Inthisway,thegeometryofX8dependsonthemannerwechoosetheU(1)rmatrixgaugechargeQaisatisfyingtheCalabi-Yaucondition.We rststudycomplextwo-dimensionalweightedprojectivespacesWP2,afterwhichwewillconsidertheHirzebruchsurfaces.Otherextendedmodelsarealsopresented.
3.2.1V2asweightedprojectivespaces
Forconstructingthesemodels,weconsideranU(1)gaugesymmetrywiththreehypermulti-pletsφiofcharges(Q1,Q2,Q3)suchthatQ1+Q2+Q3=0.OnewaytosolvethisconstraintequationistotakeQ1=m1,Q2= m1 m2andQ3=m2.ThisgivesWP2m1,m1+m2,ingexamples,letusseehowweobtainthisgeometry.Example1:(m1,m2)=(1,1).ThisexamplecorrespondstothreehypermultipletsφiwiththevectorchargeQi=(1, 2,1).Afterpermutingtheroleofφ12and
φ2= 2,2
ψ1+ 3
3ψ3+2ψ2=0(3.8)
上一篇:安全标志及其使用导则
下一篇:脾胃病科发展规划(已改)