M-theory on G_2 manifolds and the method of (p,q) brane webs(14)

发布时间:2021-06-11

M-theory on G_2 manifolds and the method of (p,q) brane webs

(2)TheresultofAcharya-WittenonM-theoryonG2manifolds,wherethesetofranksofgaugegroupscoincidewiththeweightvectoroftheWP2[25].

(3)ThelocalmirrorsymmetryapplicationintypeIIsuperstrings,wherethemirrorconstraintequationsinvolvethetoricgeometrydataoftheoriginalmanifolds[37,38,39,40].

Besidesthesepoints,acloseexaminationoftheformulationofthe(p,q)websreveals,how-ever,thatthematrixintersection(4.1)appearsintheordinaryandweightedprojectivespaces.Moreover,itdoesnotcarryanytransparenttoricgeometrydatadistinguishingthesegeome-tries.Takingintoaccountthisobservation,theconnectionweareafterleadsustoreformulatetheintersectionnumberstructuresbyintroducingthetoricgeometryMorivectorsQaiandasetofbranechargeconstraintequations.Tomakeconnectionwith[25],werestrictourselves

1=(w1,w2,w3).Givenasetofcharges(pi,qi),totheweightedprojectivespaceswhereQ

i=1,2,3,weproposetheintersectionnumberformula

Iij=wiwj(piqj piqj)

withthefollowingconstraintequations

222w1p1+w2p2+w3p3=0

222q2+w3q3=0.q1+w2w1(4.3)(4.4)

Now,thesetofranksofthegaugegroupsnishouldsatisfythefollowingconstraint

iIijni=0,(4.5)

asrequiredbytheanomalycancellationcondition[14,15].Usingequation(4.4),itiseasytoseethatthisconditioncanbesatis edintermsoftheweightsofWP2asfollows

ni=win,

andsothecorrespondinggaugesymmetryisgivenby

G=

i=1(4.6)U(win).(4.7)

Ourreformulationofthe(p,q)webshasthefollowingnicefeatures:

(1)Thisformulationisquitesimilartothegeometricengineeringoffour-dimensionalN=2superconformal eldtheorieswithgaugegroupG=

betafunction.

Dynkinlabelsbeinganullvectorofa neCartanmatricesasrequiredbythevanishingofthei=1 SU(sin)wherethesi’saretheusual

M-theory on G_2 manifolds and the method of (p,q) brane webs(14).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219