M-theory on G_2 manifolds and the method of (p,q) brane webs(14)
发布时间:2021-06-11
发布时间:2021-06-11
M-theory on G_2 manifolds and the method of (p,q) brane webs
(2)TheresultofAcharya-WittenonM-theoryonG2manifolds,wherethesetofranksofgaugegroupscoincidewiththeweightvectoroftheWP2[25].
(3)ThelocalmirrorsymmetryapplicationintypeIIsuperstrings,wherethemirrorconstraintequationsinvolvethetoricgeometrydataoftheoriginalmanifolds[37,38,39,40].
Besidesthesepoints,acloseexaminationoftheformulationofthe(p,q)websreveals,how-ever,thatthematrixintersection(4.1)appearsintheordinaryandweightedprojectivespaces.Moreover,itdoesnotcarryanytransparenttoricgeometrydatadistinguishingthesegeome-tries.Takingintoaccountthisobservation,theconnectionweareafterleadsustoreformulatetheintersectionnumberstructuresbyintroducingthetoricgeometryMorivectorsQaiandasetofbranechargeconstraintequations.Tomakeconnectionwith[25],werestrictourselves
1=(w1,w2,w3).Givenasetofcharges(pi,qi),totheweightedprojectivespaceswhereQ
i=1,2,3,weproposetheintersectionnumberformula
Iij=wiwj(piqj piqj)
withthefollowingconstraintequations
222w1p1+w2p2+w3p3=0
222q2+w3q3=0.q1+w2w1(4.3)(4.4)
Now,thesetofranksofthegaugegroupsnishouldsatisfythefollowingconstraint
iIijni=0,(4.5)
asrequiredbytheanomalycancellationcondition[14,15].Usingequation(4.4),itiseasytoseethatthisconditioncanbesatis edintermsoftheweightsofWP2asfollows
ni=win,
andsothecorrespondinggaugesymmetryisgivenby
G=
i=1(4.6)U(win).(4.7)
Ourreformulationofthe(p,q)webshasthefollowingnicefeatures:
(1)Thisformulationisquitesimilartothegeometricengineeringoffour-dimensionalN=2superconformal eldtheorieswithgaugegroupG=
betafunction.
Dynkinlabelsbeinganullvectorofa neCartanmatricesasrequiredbythevanishingofthei=1 SU(sin)wherethesi’saretheusual
上一篇:安全标志及其使用导则
下一篇:脾胃病科发展规划(已改)