M-theory on G_2 manifolds and the method of (p,q) brane webs(11)
发布时间:2021-06-11
发布时间:2021-06-11
M-theory on G_2 manifolds and the method of (p,q) brane webs
Inthisway,N=4D- atnessconstraintequationsdescribethecotangentbundleoverF0.Afterdividingbyone nitetoricgeometrycircleaction,wegetarealconeonS2bundleoverF0.
3.3OthermodelsfromWP2
Here,westudysomeextendedmodelsusingmoregeneralN=4two-dimensionalgaugetheories.Inparticular,weconsidertwopossiblegeneralizationsforWP2.The rstmodeldescribestheblowingupofWP2atonepoint.IthasasimilarfeatureasF2geometry.ThesecondmodeldealswithmodelwithADECartanmatrixgaugechargesleadingtoADEintersectinggeometries.
3.3.1BlowingupofWP2atonepoint
Forsimplicity,weconsiderWP21,2,1asanexample.ThisspacehasaZ2orbifoldsingularitycorrespondingtonon-trivial xedpointsunderthehomogeneousidenti cation
(z1,z2,z3)≡(λz1,λ2z2,λz3).(3.14)
Takingλ= 1,WP21,2,1hasaZ2orbifoldsingularityat(z1,z2,z3)=(0,1,0).Thissingularitymaybeblownupbyintroducinganexceptionaldivisor.Intwo-dimensionalN=2sigmamodel,thiscanbedeformedbyintroducinganextrachiral eldX4andanU(1)gaugegroupfactor.Inthisway,thecorrespondingeight-dimensionalmanifoldscanbedescribedbyanU(1)2linearsigmamodelwithfourhypermultipletswiththefollowingcharges
Qi=(1, 2,1,0)(1)Qi=(0, 1,0,1).(2)(3.15)
ThismodelgivesthesameG2manifoldcorrespondingtotheF2Hirzebruchsurface.
3.3.2ADEintersectinggeometry
AnothergeneralizationistoconsidertheintersectingweightedprojectivespacesaccordingtoADEDynkindiagramsbyimitatingtheanalysisofN=2sigmamodel.Thisinvolvestwo-dimensionalN=4supersymmetricU(1)rgaugetheorywith(r+2)φαihypermultipletswithADECartanmatricesasmatrixgaugecharges.Forsimplicity,letusconsidertheArLie
上一篇:安全标志及其使用导则
下一篇:脾胃病科发展规划(已改)