换热器设计外文翻译原稿(6)
发布时间:2021-06-11
发布时间:2021-06-11
232J.Guo,M.Xu/AppliedThermalEngineering36(2012)227e235
3
Table4
Theknowndataforheatexchangerdesignwiththe xedheattransferarea.
Tube-side
InlettemperatureTi(K)
_(kg/s)Mass owratem3
Densityr(kg/m)
Speci cheatatconstantpressurecp(J/(kgK))
Dynamicviscositym(kg/ms)EntrancepressurePi(MPa)
Foulingresistancer((m2K)/W)PrandtlnumberPr
368.15509704200326Â10À66.5
0.0000862.015
Shell-side283.1520
991.154174690Â10À65
0.000174.5878
Fig.5.Thevariationsoftheeffectivenessandpumpingpowerwithtotalentransydissipationnumber.
oneisshowninTable3.Fromthistable,itisevidentthattheexchangereffectivenessincreasesfrom0.448to0.706,whilethepumpingpowerisreducedby75.2%andheatcapacityrateratiodecreasesfrom0.656to0.417.Unfortunately,thenumberoftransferunitincreasesbyabouttwotimes.Sotheperformanceofheatexchangerisimprovedattheexpenseofenlargingtheheattransferarea.Howeverfromtheviewpointofeconomics,itcanbefoundthatthegrosspro tisfarmorethantheincreaseoftheinvestmentcost,andthedetailedanalysisispresentedin[28].WhenmoreattentionispaidtoTable3,itcanbefoundthattheentransydissipationnumberdueto uidfrictionisaroundthreeordersofmagnitudelessthanthatcausedbyheatconduction.Infact,theirreversibilitydueto uidfrictionisfarlessthantheirreversibilityassociatedwithheatconductionforliquidsinmostsituations[35].Hence,thesingle-objectiveoptimizationdesignofheatexchangerwhichtakesthetotalentransydissipationnumberastheobjectivefunctionmayleadtosomeunwantedconse-quences.Thiscanbedemonstratedbytheheatexchangerdesignwiththe xedheattransferarea.
3.2.2.Optimizationdesignforgivenheattransferarea
TheknowndatafortheheatexchangerdesignisshowninTable4,thetotalentransydissipationnumberandentropygener-ationnumberaretakenastheobjectivefunctions,thedesignparametersandtheirrangesarethesameasthatpresentedinthelastexample,excepttheoutlettemperatureofthecold uid.Theheattransferareais xedat60m2,thesizesofinitialpopulationandthemaximumnumberofgenerationsaresetto40and500,respectively.Thesamegeneticalgorithmisemployedtosolvethisoptimizationproblem.
ThevariationoftheheatexchangereffectivenesswiththedecreaseofentropygenerationnumberisshowninFig.6.Fig.6showsthatthedecreasesofentropygenerationnumberresultsinthedecreaseoftheeffectiveness,whichiscalled“entropygenera-tionparadox”[36].TherelationbetweentheeffectivenessandthetotalentransydissipationnumberisdemonstratedinFig.7.FromFig.7,onecanseethattheeffectivenessincreasesasthetotal
entransydissipationnumberdecreases,andthe“entropygenera-tionparadox”doesnotappear.Therefore,theentransydissipationnumberdemonstratesanobviousadvantageovertheentropygenerationnumberinheatexchangerdesign.
ThevariationsofGDTandGDPwiththenumberofgenerationsareshowninFig.8.Fromthis gure,itisevidentthatwithincreasingthenumberofgenerations,theentransydissipationnumberduetoheatconductiondecreasesremarkably,whiletheentransydissipationnumbercausedby uidfrictionrisessigni -cantly,whichisundesirable.Fig.9showstherelationbetweenthetotalpumpingpowerandthetotalentransydissipationnumber.Withdecreasingthetotalentransydissipationnumber,theexchangereffectivenessisimprovedsigni cantlyasshowninFig.7,whilethepumpingpowerincreasesdramaticallyasdemonstratedinFig.9.Recallthattheheattransferareais xedinthisexample,thustheimprovementoftheexchangereffectivenessisattheexpenseofthelargerpumpingpowerconsumption.FromFigs.7e9,onecanseethattakingthetotalentransydissipationnumberastheobjectivefunctionisalmostequivalenttominimizingtheentransydissipationnumberduetoheatconduction,andtheentransydissipationcausedby uidfrictionisalmostneglectedsinceitisfarsmallerthanthatcausedbyheatconduction.Inanattempttosolvethisproblem,themulti-objectiveoptimizationdesignofheatexchangerisestablishedinthefollowingsubsection.
3.3.Multi-objectiveoptimization
Mathematically,themulti-objectiveoptimizationminimizesseveralobjectivessimultaneously,withanumberofinequalityorequalityconstraints.Itcanbemathematicallyformulatedasfollows:
minfðxÞ¼½f1ðxÞ;f2ðxÞ;/;fkðxÞ
x X
(20)
Subjectto:
gjðxÞ¼0;j¼1;2;/;MhkðxÞ 0;k¼1;2;/;K
wherexisavectorandcalledthedecisionvector,Xistheparameterspace.Ifandonlyif,fi(x) fi(y)fori¼1,2,/kandfj(x)<fj(y)foratleastoneobjectivefunctionj,afeasiblesolutionxissaidtodomi-nateanotherfeasiblesolutiony.AsolutionwhichisnotdominatedbyanyothersolutioninthefeasibleregioniscalledParetooptimalsolution.Thesetofallnon-dominatedsolutionsinXiscalledas
the
Table3
Thecomparisonbetweenaninitialandtheoptimaldesign.
do(m)
InitialFinal
0.0190.020
n243322
Bs0.9770.858
q(rad)
2.0382.557
Tc,o(K)321.26343.15
NTU0.7171.501
C*0.6560.417
W(W)1403348
0.4480.706
G*DT0.630.50
G*DP
8.14Â102.13Â10À4
G*0.62960.5002
上一篇:组织行为学试卷A附答案
下一篇:奶牛营养研究与饲料资源的利用