基于小波包分析及神经网络的汽轮机转子振动故障诊断
时间:2025-04-24
时间:2025-04-24
第24卷第6期2007年12月
文章编号:1000—8152(2007)06—0981—05
控制理论与应用
ControlTheory&Applications
、,01.24NO.6
Dec.2007
基于小波包分析及神经网络的汽轮机转子振动故障诊断
梁平1,白蕾1,龙新峰2,范立莉3
(1.华南理工大学电力学院,广东广州510640;2.华南理工大学化工与能源学院,广东广州510640;
3.广东电网公司电力科学研究院,广东广州510640)
摘要:根据Benfly实验台所采集的碰摩、松动、不对中、不平衡4种典型汽轮机转子振动故障信号,运用小波包分析方法对其进行能量分析并提取故障特征.分析结果表明:小波包分析与信号能量分解的故障特征提取方法。可以获得汽轮机转子振动的故障状态,有较好的故障区分度;另外由于经过小波包分解再重构后所提取的故障特征参数浓缩了汽轮机转子振动故障的全部信息,而BP神经网络具有优良的非线性映射能力,对提取的故障特征参数应用BP神经网络映射,可对汽轮机转子振动故障进行进一步的诊断.诊断结果表明:基于小波包分析及神经网络的故障诊断方法,具有较高的故障识别能力.
关键词:小波包分析;汽轮机转子;故障诊断;特征提取;BP神经网络中图分类号:TK268.+1
文献标识码:A
Turbinerotorvibrationfaultsdiagnosis
based
0n
waveletpacketanalysisandneuralnetwork
LIANGPin91。BAILeil,LONGXin—fen92,FANLi—li3
(1.CollegeofElectricityPower'SouthChinaUniversityofTechnology,GuangzhouGuangdong510640,China;
2.CollegeofChemicalEngineeringandEnergy,SouthChinaUniversityofTechnology,GuangzhouGuangdong5
3.Electric
PowerResearch
10640,China;
Instituteof
Guangdong
Power
Grid,GuangzhouGuangdong510600,China)
Abstract:AccordingtOthefourtypicalfaultsignalsofturbinevibrationincludingrubbing,loosing,misalignmentand
are
massunbalancecollectedfromtheBentlyexperimenttable,energyanalysisandsymptomextraction
waveletpacketanalysis.Theresultsof
carriedout
by
analysis
indicatethat
rotor
symptomextractionbywaveletpacketanalysisandenergy
decomposition
canobtainthefaultsstateofturbine
vibration,possessbetterdifferentiationcapabilityoffaulttypes.
Inaddition,thefault
symptomparametersextractedbywaveletpacketdecompositionandreconstructioncondensethe
rotor
wholeinformationofturbinevibration
faults,andneuralnetworkpossessesgood
can
non—linearmappingcapability.For
rotor
thesesymptomparameters,applyingBPneuralnetworkmapping
Theresultsof
diagnosetheturbine
on
vibrationfaultsfurther.
diagnosisindicatethatthefaultsdiagnosismethodbasedwaveletpacketanalysisandneuralnetworkhas
betterfaultsidentificationcapability.
Keywords:waveletpacketanalysis;turbinerotor;faultdiagnosis;s …… 此处隐藏:8471字,全部文档内容请下载后查看。喜欢就下载吧 ……