【精品】最新高中数学-- 排列组合典型题大全含答案

时间:2025-04-19

【精品】最新高中数学-- 排列组合典型题大全

一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素

看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用

住店处理的策略中,关键是在正确判断哪个底数,哪个是指数

【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?

(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?

(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?

【解析】:(1)43(2)34(3)34

【例2】把6名实习生分配到7个车间实习共有多少种不同方法?

【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,

第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.

【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C

【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠

军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种

不同的结果。所以选A

1、4封信投到3个信箱当中,有多少种投法?

2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?

3、4个同学参加3项不同的比赛

(1)每位同学必须参加一项比赛,有多少种不同的结果?

(2)每项竞赛只许一名同学参加,有多少种不同的结果?

4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?

5、甲乙丙分10瓶汽水的方法有多少种?

6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共

(A)10种(B) 20种(C) 25种(D) 32种

7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?

8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?

思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?

二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

【例1】,,,,

A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有

【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4

424

A 种

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进

行自排。由分步计数原理可得共有

522522480A A A =种不同的排法

【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 288 C. 216 D. 96

【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种

其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288

例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。 A )720 B )360 C )240 D )120

三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几

个元素插入上述几个元素的空位和两端.

【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是

【解析】:除甲乙外,其余5个排列数为5

5A 种,再用甲乙去插6个空位有2

6A 种,不同的排法种数是52563600A A =种

【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)

【解析】: 111789A A A =50

4或分类 【例3】 高三(一)班学要安=排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的 演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是

【解析】:不同排法的种数为52

56A A =3600

【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工 程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行。那么安排这6 项工程的不同排法种数是

【解析】:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

【例5】某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾”有关的节目, 但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变, 则该晚会的节目单的编排总数为 种. 【解析】:1

1

1

91011A A A =990

【例 …… 此处隐藏:1347字,全部文档内容请下载后查看。喜欢就下载吧 ……

【精品】最新高中数学-- 排列组合典型题大全含答案.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219