Optimization-of-Passive-Air-Damping-of-MOEMS-Vibration-Senso(2)
时间:2026-01-15
时间:2026-01-15
A. Kainz et al. / Procedia Engineering 87 ( 2014 ) 4
40 – 443 441
(a)Micrographofourteststructure.Theoscillationsof
theSimassinducealight uxmodulationthroughtheholesintheSimassandtheCrapertureontheglass.TheairdampingdependsonthedistancesfromthemasstotheSiframe(in-plane)andtotheglasswall(out-of-plane)[1
].
(b)Componentscontributingtotheairdampingofthedevice.Couette ow(dC),shearwaves(dδ)aswellaspressureandviscousforces(dfr)actingonthefrontoftheseismicmassarethemajorcontributions.
Figure1:Layout(a)anddampingcomponents(b)oftheMOEMS.
i.e.inevacuateddevices.Duetothestrongin uenceofviscousandpressureinduceddamping,itismandatorytoisolateandcontroltherelevantquantitiesthatdetermined.Thisallowsfortuningthetransferfunction,especiallyheightandwidthoftheresonancepeak,oftheMOEMSto ttheneedsofagivensensingpurpose.Forinstance,avibrationsensorfavorsalowpeaktoextendthemeasurementregimeandtoavoidringing,whereasaresonantsensorrequiresaveryhighpeakforhighsensitivity.
Inordertodescribeandquantifythecontributionstotheairdamping,onecanemployanalyticalmodelsand/ornumericalapproaches.Forthepresentcase,acombinationofbothwasused,sinceontheonehandanalyticalmodelsareverytimesavingande cient,butontheotherhandcompactandplausibleonesareavailableonlyforfewverysimplegeometries.Asnumericalapproach,wechosethe nitevolumemethod(FVM)implementedintheopensourcesoftwareOpenFOAM®.TheFVMisanumericalmethodforsolvingpartialdi erentialequationsandatypicalandpreferablechoiceforcomputational uiddynamics(CFD)problems.ThisismainlyduetothefactthattheFVMbyde nitionsatis esmass,momentumandenergybalance,threeofthemostfundamentalrequirementsfor uiddynamics.
2.GoverningEquationsandDampingContributions
Theoscillationofthemicrostructurecanbedescribedbyadamped(d),driven(K=Kex),harmonicoscillatorwithmassmandsti nessk.AmicrographofateststructureisdepictedinFig.1a.Thecomplexvalued,frequencydependenttransferfunctionA(ω=2πf)ofthesensingdeviceisthusgivenby
Kω2
A(ω)=.+km ω2+iω(1)
Thedampingparameterdresultsfromtheinduced,incompressible owofair(densityρ,dynamicviscosityμ)
betweenstructureandboundingwallsthatsatis estheNavier-StokesEquationandmassbalance
1μ v
+(v· )v= p+Δvand
·v=0,
(2)
respectively.Here,pisthe uid’spressureandvisthe uid’svelocitywhichhastosatisfytheno-slipcondition
v=vstronthemicrostructre.AgraphicoverviewofthecontributionstotheairdampingcanbeseeninFig.1b.TheusuallylargestcontributiondCisduetothesteeplinearvelocitypro leoftheCouette-like owbetweenglass
…… 此处隐藏:442字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:最优化理论与算法