A Generative Perspective on MRFs in Low-Level Vision Supplem(3)

时间:2025-07-09

2.ImageRestoration

Tofurtherillustratetheimagerestorationperformanceofourapproach,weprovidethefollowingadditionalresults: Table1repeatsTab.1ofthemainpaperandadditionallygivesthenumericalresultsofMAPestimationwithgraphcutsandα-expansion[1].Notethatinmostcases,α-expansionperformsslightlyworseintermsofPSNRthanconjugategradients,even(andinfactparticularly)fornon-convexpotentials.Also,usingaStudent-tpotential[3]doesnotshowfavorableresults. Table2showstheresultsofthesameexperimentasinTab.1,butreportstheperformanceintermsoftheperceptuallymorerelevantstructuralsimilarityindex(SSIM)[10].Notethatalloftheconclusionsreportedinthemainpaperalsoholdforthisperceptualqualitymetric. Table3repeatsTab.2ofthemainpaper,andadditionallyreportsstandarddeviationsaswellasSSIMperformance.TheSSIMsupportsthesameconclusionsaboutrelativeperformanceasthePSNR. Figs.1–6showdenoisingresultsfor6ofthe68images,forwhichtheaverageperformanceisreportedinTab.2ofthemainpaper.Notethatincontrasttothetestedpreviousapproaches,combiningourlearnedmodelswithMMSEleadstogoodperformanceonrelativelysmoothaswellasonstronglytexturedimages. Fig.7providesadifferentviewofthesummaryresultsinTab.2ofthepaper.Insteadoftheaverageperformance,weshowaper-imagecomparisonbetweenthedenoisingresultsofthediscriminativeapproachof[8](usingMAP)andtheresultsofourgeneratively-trained3×3FoE(usingMMSE).NotethatthePSNRandparticularlytheSSIMshowasubstantialperformanceadvantageforourapproach. Fig.8showsanuncroppedversionoftheinpaintingresultinFig.7ofthepaper.Additionally,oneotherinpaintingresultisprovidedasfurthervisualillustration.

3.SamplingthePriorandPosterior

Thefollowingadditionalresultsillustratepropertiesoftheauxiliary-variableGibbssampler.

Fig.9shows vesubsequentsamples(afterreachingtheequilibriumdistribution)fromallmodelslistedinTable1.Notehowsamplesfromcommonpairwisemodelsappeartoo“grainy”,whilethosefrompreviousFoEmodelsaretoosmoothandwithoutdiscontinuities. Fig.10showstwolargersamplesfromourlearnedmodels.Notethatourpairwisemodelleadstolocallyuniformsampleswithoccasionaldiscontinuitiesthatappearspatiallyisolated(“speckles”).Ourlearnedhigh-ordermodel,ontheotherhand,leadstosmoothlyvaryingsampleswithoccasionalspatiallycorrelateddiscontinuities,whichappearmorerealistic. Fig.11illustratestheconvergenceofthesamplingprocedureforthepriorandtheposterior(incaseofdenoising). Fig.12illustratestheadvantagesofrunningmultipleparallelsamplers.

References

[1]Y.Boykov,O.Veksler,andR.Zabih.Fastapproximateenergyminimizationviagraphcuts.PAMI,23(11):1222–1239,2001.[2]A.Buades,B.Coll,andJ.-M.Morel.Anon-localalgorithmforimagedenoising.CVPR2005.

[3]n,S.Roth,D.P.Huttenlocher,andM.J.Black.Ef cientbeliefpropagationwithlearnedhigher-orderMarkovrandom elds.

ECCV2006.

[4]ingnaturalimagepriors–Maximizingorsampling?Master’sthesis,TheHebrewUniversityofJerusalem,2009.

[5]M.Norouzi,M.Ranjbar,andG.Mori.StacksofconvolutionalrestrictedBoltzmannmachinesforshift-invariantfeaturelearning.

CVPR,2009.

[6]J.Portilla,V.Strela,M.J.Wainwright,andE.P.Simoncelli.ImagedenoisingusingscalemixturesofGaussiansinthewavelet

domain.IEEETIP,12(11):1338–1351,2003.

[7]S.RothandM.J.Black.Fieldsofexperts.IJCV,82(2):205–229,2009.

[8]K.G.G.SamuelandM.F.Tappen.LearningoptimizedMAPestimatesincontinuously-valuedMRFmodels.CVPR2009.

…… 此处隐藏:1252字,全部文档内容请下载后查看。喜欢就下载吧 ……
A Generative Perspective on MRFs in Low-Level Vision Supplem(3).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219