A Generative Perspective on MRFs in Low-Level Vision Supplem(3)
时间:2025-07-09
时间:2025-07-09
2.ImageRestoration
Tofurtherillustratetheimagerestorationperformanceofourapproach,weprovidethefollowingadditionalresults: Table1repeatsTab.1ofthemainpaperandadditionallygivesthenumericalresultsofMAPestimationwithgraphcutsandα-expansion[1].Notethatinmostcases,α-expansionperformsslightlyworseintermsofPSNRthanconjugategradients,even(andinfactparticularly)fornon-convexpotentials.Also,usingaStudent-tpotential[3]doesnotshowfavorableresults. Table2showstheresultsofthesameexperimentasinTab.1,butreportstheperformanceintermsoftheperceptuallymorerelevantstructuralsimilarityindex(SSIM)[10].Notethatalloftheconclusionsreportedinthemainpaperalsoholdforthisperceptualqualitymetric. Table3repeatsTab.2ofthemainpaper,andadditionallyreportsstandarddeviationsaswellasSSIMperformance.TheSSIMsupportsthesameconclusionsaboutrelativeperformanceasthePSNR. Figs.1–6showdenoisingresultsfor6ofthe68images,forwhichtheaverageperformanceisreportedinTab.2ofthemainpaper.Notethatincontrasttothetestedpreviousapproaches,combiningourlearnedmodelswithMMSEleadstogoodperformanceonrelativelysmoothaswellasonstronglytexturedimages. Fig.7providesadifferentviewofthesummaryresultsinTab.2ofthepaper.Insteadoftheaverageperformance,weshowaper-imagecomparisonbetweenthedenoisingresultsofthediscriminativeapproachof[8](usingMAP)andtheresultsofourgeneratively-trained3×3FoE(usingMMSE).NotethatthePSNRandparticularlytheSSIMshowasubstantialperformanceadvantageforourapproach. Fig.8showsanuncroppedversionoftheinpaintingresultinFig.7ofthepaper.Additionally,oneotherinpaintingresultisprovidedasfurthervisualillustration.
3.SamplingthePriorandPosterior
Thefollowingadditionalresultsillustratepropertiesoftheauxiliary-variableGibbssampler.
Fig.9shows vesubsequentsamples(afterreachingtheequilibriumdistribution)fromallmodelslistedinTable1.Notehowsamplesfromcommonpairwisemodelsappeartoo“grainy”,whilethosefrompreviousFoEmodelsaretoosmoothandwithoutdiscontinuities. Fig.10showstwolargersamplesfromourlearnedmodels.Notethatourpairwisemodelleadstolocallyuniformsampleswithoccasionaldiscontinuitiesthatappearspatiallyisolated(“speckles”).Ourlearnedhigh-ordermodel,ontheotherhand,leadstosmoothlyvaryingsampleswithoccasionalspatiallycorrelateddiscontinuities,whichappearmorerealistic. Fig.11illustratestheconvergenceofthesamplingprocedureforthepriorandtheposterior(incaseofdenoising). Fig.12illustratestheadvantagesofrunningmultipleparallelsamplers.
References
[1]Y.Boykov,O.Veksler,andR.Zabih.Fastapproximateenergyminimizationviagraphcuts.PAMI,23(11):1222–1239,2001.[2]A.Buades,B.Coll,andJ.-M.Morel.Anon-localalgorithmforimagedenoising.CVPR2005.
[3]n,S.Roth,D.P.Huttenlocher,andM.J.Black.Ef cientbeliefpropagationwithlearnedhigher-orderMarkovrandom elds.
ECCV2006.
[4]ingnaturalimagepriors–Maximizingorsampling?Master’sthesis,TheHebrewUniversityofJerusalem,2009.
[5]M.Norouzi,M.Ranjbar,andG.Mori.StacksofconvolutionalrestrictedBoltzmannmachinesforshift-invariantfeaturelearning.
CVPR,2009.
[6]J.Portilla,V.Strela,M.J.Wainwright,andE.P.Simoncelli.ImagedenoisingusingscalemixturesofGaussiansinthewavelet
domain.IEEETIP,12(11):1338–1351,2003.
[7]S.RothandM.J.Black.Fieldsofexperts.IJCV,82(2):205–229,2009.
[8]K.G.G.SamuelandM.F.Tappen.LearningoptimizedMAPestimatesincontinuously-valuedMRFmodels.CVPR2009.
…… 此处隐藏:1252字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:外资保险公司经营绩效探讨