A Generative Perspective on MRFs in Low-Level Vision Supplem(2)
时间:2025-07-09
时间:2025-07-09
Byusingthewell-knownpropertyitfollowsthat
x=WZW
T 1
y~N(0,I) Ay~N(0,AIAT),√
√ √ T T 1WZIWZWWZ
(6)
WZy~Nx;0,WZW
T 1
~Nx;0,WZW
T 1
(7)
isindeedavalidsamplefromtheconditionaldistributionasderivedinEq.(3).Sincethescalesareconditionallyindependent
giventheimagebyconstruction,theconditionaldistributionp(z|x;Θ)isreadilygivenas
2
p(zic|x;Θ)∝p(zic)·N(JTix(c);0,σi/szic).
(8)
1.2.ConditionalSampling
Inordertoavoidextremevaluesatthelessconstrainedboundarypixels[5]duringlearningandmodelanalysis,orto
performinpaintingofmissingpixelsgiventheknownones,werelyonconditionalsampling.Inparticular,wesamplethepixelsxAgiven xedxBandscaleszaccordingtotheconditionalGaussiandistribution
p(xA|xB,z;Θ),
whereAandBdenotetheindexsetsoftherespectivepixels.Withoutlossofgenerality,weassumethat
xA
x=,
xB
Σ=WZW
T 1
A
=
CT
CB 1
,
(10)(9)
wherethesquaresub-matrixAhasasmanyrowsandcolumnsasthevectorxAhaselements,etc.Theconditionaldistributionofinterestcannowbederivedas
T
1xAACxA
p(xA|xB,z;Θ)∝exp
CTBxB2xB
(11) T 1 1 1
∝exp xA+ACxBAxA+ACxB
2 ∝NxA; A 1CxB,A 1.ThematricesAandCaregivenbytheappropriatesub-matricesofWiandZi,andallowforthesameef cientsamplingscheme.Themeanµ= A 1CxBcanalsobecomputedbysolvingaleastsquaresproblem.Samplingtheconditionaldistributionofscalesp(z|xA,xB;Θ)=p(z|x;Θ)remainsasbefore.
1.3.SamplingthePosteriorforImageDenoising
Assumingadditivei.i.d.Gaussiannoisewithknownstandardderivationσ,theposteriorgivenscaleszcanbewrittenas
p(x|y,z;Θ)∝p(y|x)·p(x|z;Θ)
1 1
T 12
∝exp 2 y x ·exp xΣx
2σ 2
1I 1TyT
∝exp 2x2+x+Σx
2σσ2
2 ∝Nx;Σy/σ,Σ,
(12)
=I/σ2+Σ 1 1andΣasinEq.(4).Theconditionaldistributionofthescalesp(z|x,y;Θ)=p(z|x;Θ)whereΣ
remainsasbefore.
上一篇:外资保险公司经营绩效探讨