利用排序不等式证明AM-GM不等式

时间:2025-07-09

自己原创的。

河南开封市高级中学jason_1108@

利用排序不等式证明AM-GM不等式AM-GM不等式若a1,a2, ,an>0,则

a1+a2+ +an≥n

等号当且仅当a1=a2= =an时成立a1a2 an

证明:令G=a1a2 an,则原不等式等价于

a1+a2+ +an≥nG

构造数列

A=

B= aaaaa a,, ,2GGGnGG2Gn,, ,a1a1a2a1a2 an

显然,两组数列中的元素有着一一对应的关系,即A中第K大的元素在B中所对应的元素是第K小的元素。所以,A、B两组数列中的元素对应相乘再相加所得结果是两组数列的反序和,即为n。

另一方面,A、B两组数列错位相乘为两组数列的乱序和,即乱序和是a1+a2+ +an。G

由排序不等式,乱序和大于等于逆序和,即

a1+a2+ +an≥nG

原不等式得证。

利用排序不等式证明AM-GM不等式.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:7 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:29元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219