高中数学高考导数题型分析及解题方法

发布时间:2021-06-08

导数题型分析及解题方法

一、考试内容

导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析

题型一:利用导数研究函数的极值、最值。

32

f(x) x 3x 2在区间 1,1 上的最大值是 2 1.

题型二:利用导数几何意义求切线方程

4

1.若曲线f(x) x x在P点处的切线平行于直线3x y 0,则P点的坐标为 (1,0)

4

y x2.若曲线的一条切线l与直线x 4y 8 0垂直,则l的方程为 4x y 3 0

题型三:利用导数研究函数的单调性,极值、最值

32

f(x) x ax bx c,过曲线y f(x)上的点P(1,f(1))的切线方程为y=3x+1 1.已知函数

(Ⅰ)若函数f(x)在x 2处有极值,求f(x)的表达式;

(Ⅱ)在(Ⅰ)的条件下,求函数y f(x)在[-3,1]上的最大值; (Ⅲ)若函数y f(x)在区间[-2,1]上单调递增,求实数b的取值范围

322

f(x) x ax bx c,求导数得f(x) 3x 2ax b. 解:(1)由

过y f(x)上点P(1,f(1))的切线方程为:

y f(1) f (1)(x 1),即y (a b c 1) (3 2a b)(x 1).

而过y f(x)上P[1,f(1)]的切线方程为y 3x 1. 3 2a b 3

a c 3

2a b 0即

a c 3

① ②

∵y f(x)在x 2时有极值,故f( 2) 0, 4a b 12 ③

32

f(x) x 2x 4x 5. 由①②③得 a=2,b=-4,c=5 ∴

2

f(x) 3x 4x 4 (3x 2)(x 2). (2)

2

3 x 2时,f (x) 0;当 2 x 时,f (x) 0;

3当

高中数学高考导数题型分析及解题方法.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219