Semantic Role Labelling of Prepositional Phrases(10)
发布时间:2021-06-08
发布时间:2021-06-08
Abstract. In this paper, we propose a method for labelling prepositional phrases according to two different semantic role classifications, as contained in the Penn treebank and the CoNLL 2004 Semantic Role Labelling data set. Our results illustrate the dif
theirrespectivelimitsare,wealsousedoracledoutputsfromeachsubtaskincombiningthe naloutputsoftheprepositionSRLsystem.Theoracledoutputsarewhatwouldbeproducedbyperfectclassi ers,andareemulatedbyinspectionofthegold-standardannotationsforthetestingdata.
Table5showstheresultsoftheprepositionSRLsystemsbeforetheyaremergedwiththeverbSRLsystems.TheseresultsshowthatthecoverageofourprepositionSRLsystemisrelativelylowrelativetothetotalnumberofargu-mentsinthetestingdata,evenwhenoracledoutputsfromallthreesubsystemsareused(recall=18.15%).However,thisisnotsurprisingbecauseweexpectedthemajorityofsemanticrolestobenounphrases.
InTables6,7and8,weshowhowourprepositionSRLsystemperformswhenmergedwiththetop3systemsunderthe3mergingstrategiesintroducedinSection3.6.Ineachtable,ORIGreferstothebasesystemwithoutprepositionSRLmerging.
Wecanmakeafewobservationsfromtheresultsofthemergedsystems.First,outofverbattachment,SRDandsegmentation,theSRDmoduleisboth:(a)thecomponentwiththegreatestimpactonoverallperformance,and(b)thecomponentwiththegreatestdi erentialbetweentheoracleperformanceandclassi er(AUTO)performance.Thiswouldthusappeartobetheareainwhichfuturee ortsshouldbeconcentratedinordertoboosttheperformanceofholisticSRLsthroughprepositionSRL.
Second,theresultsshowthatinmostcases,therecallofthemergedsystemishigherthanthatoftheoriginalSRLsystem.Thisisnotsurprisinggiventhatwearegenerallyrelabellingoraddinginformationtotheargumentstructureofeachverb,althoughwiththemoreagressivemergingstrategies(namelyS2andS3)itsometimeshappensthatrecalldrops,thoughtheextentofanargumentbeingaverselya ectedbyrelabelling.Itdoesseemtopointtoacomplementaritybetweenverb-drivenSRLandpreposition-speci cSRL,however.
Finally,itwassomewhatdisappointingtoseethatinnoinstancedidafully-automatedmethodsurpassthebasesysteminprecisionorF-score.Havingsaidthis,weareencouragebythesizeofthemarginbetweenthebasesystemsandthefullyoracle-basedsystems,asitsupportsourbasehypothesisthatprepositionSRLhasthepotentialtoboosttheperformanceofholisticSRLsystems,uptoamarginof10%inF-scoreforS3.
4AnalysisandDiscussion
Intheprevious2sections,wepresentedthemethodologiesandresultsoftwosystemsthatperformstatisticalanalysisonthesemanticsofprepositions,eachusingadi erentdataset.Theperformanceofthe2systemswasverydi er-ent.TheSRDsystemtrainedonthetreebankproducedalmostperfectresults,whereastheSRLsystemtrainedonConll2004SRLdatasetproducedsomewhatnegativeresults.Intheremainderofthissection,wewillanalyzetheseresultsanddiscusstheirsigni cance.
Thealmostperfectresultsonthetreebankdatasuggestthatthesemantictaggingofprepositionsintreebankishighlyarti cial.Thisisevidentinthreeways.First,theproportionofprepositionalphrasestaggedwithsemanticrolesissmall–around57,000PPsoutofthemillion-wordTreebankcorpus.This
上一篇:弱电布线基础知识