直角三角形的边角关系的应用(二)

发布时间:2021-06-08

青岛班课程

直角三角形的边角关系的应用(二)

学习目标:

1.认识仰角、俯角,进一步体会三角函数在解决实际问题过程中的应用.

2.体会解决此类问题的关键是把实际问题转化为数学问题,并通过作辅助线的方法转化成直角三角形来解。

学习重点:

体会三角函数在解决实际问题过程中的应用.

学习难点:

发展学生数学应用意识和解决问题的能力。

学习过程:

一、复习回顾

1、如右图:在Rt△ABC中,说出∠A、∠B的三角函数值

2、说出30°、45°、60°的三角函数值

3、测得某坡面垂直高度为2m, 坡面为4m,则坡度为_______,坡角

为______。

二、新课讲解

1、定义:仰角:

俯角:

右图:一人站在旗杆前,那么他看旗杆顶的仰角是__________

他看旗杆底的俯角是__________

2、例题:如图,A、 B两座楼相距30米,某同学在A楼家中观测B楼测得B楼的顶部仰角为45°,B楼的底部的俯角为30°,你能求出B楼的高吗?

练习: 1、右图:在甲楼A处测得乙楼顶的仰角为30°,测得乙楼

底的俯角为45°,两楼相距60米。

求两楼高度

2、右图:在甲楼A处测得乙楼顶的仰角为60°,测得乙楼底的俯角为45°,甲楼高100米。求乙楼高度和两楼距离 3、右图:在甲楼顶测得乙楼顶的仰角为30°,在甲楼底测得乙楼顶的仰角为60°,甲楼的高为50米。 求乙楼高度 例2、右图:小明在A处测得塔顶仰角为45°,前进10米至B处, 测得塔顶仰角为60°。求塔高 练习: 1、右图:小明在A处测得塔顶仰角为30°,前进100米至B处, 测得塔顶仰角为45°。求塔高 2、如图,一飞机从一高炮C的正上方D点2 000 m 经过,沿水平方向飞行,稍后到达B点,此时仰角45°, 一分钟后飞机到达A点,仰角为30°,求飞机从B到A的速度?

直角三角形的边角关系的应用(二).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219