c154-FDK-TS-SCT(10)
时间:2025-04-03
时间:2025-04-03
小波分析论文
ZHAO et al.: A FILTERED BACKPROJECTION ALGORITHM FOR TRIPLE-SOURCE HELICAL CONE-BEAM CT393[7] J. D. Pack, F. Noo, and R. Clackdoyle, “Cone-beam reconstruction using the backprojection of locally ltered projections,” IEEE Trans. Med. Imag., vol. 24, no. 1, pp. 1–16, 2005. [8] J. D. Pack and F. Noo, “Cone-beam reconstruction using 1-D ltering along the projection of M-lines,” Inverse Problems, vol. 21, pp. 1105–1120, 2005. [9] G. Chen, “An alternative derivation of Katsvich’s cone-beam reconstruc-tion formula,” Med. Phys., vol. 30, pp. 3217–3226, 2003. [10] S. Zhao, H. Yu, and G. Wang, “A family of analytic algorithms for cone-beam CT,” in Proc. SPIE, Aug. 2004, vol. 5535, pp. 318–328. [11] S. Zhao, H. Yu, and G. Wang, “A unied framework for exact conebeam reconstruction formulas,” Med. Phys., vol. 32, pp. 1712–1721, 2005. [12] J. Zhao, M. Jiang, T. Zhuang, and G. Wang, “Minimum detection window and inter-helix PI-line with triple-source helical cone-beam scanning,” in Proc. SPIE, Aug. 2004, vol. 5535, pp. 599–610. [13] J. Zhao, M. Jiang, T. Zhuang, and G. Wang, “Minimum detection window and inter-helix PI-line with triple-source helical cone-beam scanning,” J. X-Ray Sci. Technol., vol. 14, pp. 95–107, 2006. [14] J. Zhao, M. Jiang, T. G. Zhuang, and G. Wang, “A reconstruction algorithm for triple-source helical cone-beam CT,” in Proc. 27th Annu. Int. Conf. IEEE EMBS, Shanghai, China, Sep. 2005, vol. 2412, pp. 1875–1878. [15] J. Zhao, M. Jiang, T. G. Zhuang, and G. Wang, “An exact reconstruction algorithm for triple-source helical cone-beam CT,” J. X-Ray Sci. Technol., vol. 14, pp. 191–206, 2006. [16] P. E. Danielsson, P. Edholm, and M. Seger, “Toward exact 3-D-reconstruction for helical cone-beam scanning of long objects. A new detector arrangement and a new completeness condition,” in Int. Meeting Fully Three-Dimensional Image Reconstruction Radiol. Nucl. Med., Pittsburgh, PA, 1997, pp. 141–144. [17] K. C. Tam, S. Samarasekera, and F. Sauer, “Exact cone beam CT with a spiral scan,” Phys. Med. Biol., vol. 43, pp. 1015–1024, 1998. [18] H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math., vol. 43, no. 3, pp. 546–552, 1983. [19] X. Pan, “Fast reconstruction with uniform noise properties in halfscan computed tomography,” Med. Phys., vol. 27, pp. 2031–2036, 2000. [20] S. W. Lee and G. Wang, “A Grangeat-type half-scan algorithm for cone-beam CT,” Med. Phys., vol. 30, pp. 689–700, 2003. [21] Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT uoroscopy with multiple x-ray sources,” Med. Phys., vol. 28, pp. 1466–1471, 2001. [22] B. H. Berninger and R. W. Redington, “Multiple Purpose High Speed Tomographic X-Ray Scanner,” U.S. Patent 4 196 352, 1980. [23] T. G. Flohr, C. H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Suss, M. Grasruck, K. Stierstorfer, B. Krauss, R. Raupach, A. N. Primak, A. Kuttner, S. Achenbach, C. Becker, A. Kopp, and B. M. Ohnesorge, “First performance evaluation of a dual-source CT (DSCT) system,” Eur. Radiol., vol. 16, no. 2, pp. 256–68, 2006. [24] S. Achenbach, D. Ropers, A. Kuettner, T. Flohr, B. Ohnesorge, H. Bruder, H. Theessen, M. Karakaya, W. G. Daniel, W. Bautz, W. A. Kalender, and K. Anders, “Contrast-enhanced coronary artery visualization by dual-source computed tomography–Initial experience,” Eur. J. Radiol., vol. 57, no. 3, pp. 331–5, 2006. [25] T. R. Johnson, K. Nikolaou, B. J. Wintersperger, A. W. Leber, F. von Ziegler, C. Rist, S. Buhmann, A. Knez, M. F. Reiser, and C. R. Becker, “Dual-source CT cardiac imaging: Initial experience,” Eur. Radiol., vol. 16, no. 7, pp. 1409–15, 2006. [26] H. Scheffel, H. Alkadhi, A. Plass, R. Vachenauer, L. Desbiolles, O. Gaemperli, T. Schepis, T. Frauenfelder, T. Schertler, L. Husmann, J. Grunenfelder, M. Genoni, P. A. Kaufmann, B. Marincek, and S. Leschka, “Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control,” Eur. Radiol., Sep. 2006, to be published. [27] M. Kachelrie, M. Knaup, and W. A. Kalender, “Multithreaded cardiac CT,” Med. Phys., vol. 33, pp. 2435–2447, 2006. [28] V. P. Palamodov, “Reconstruction from ray integrals with sources on a curve,” Inv. Prob., vol. 4, pp. 239–242, 2004. [29] S. S. Orlov, “Theory of three-dimensional reconstruction. I. Conditions for a complete set of projections,” Sov. Phys. Crystallogr., pp. 511–515, 1975. [30] Y. Ye, H. Yu, Y. Wei, and G. Wang, “A general local reconstruction approach based on a truncated Hilbert transform,” Int. J. Biomed. Imag., vol. 2007, p. 8, 2007. [31] Y. Zou and X. Pan, “An extended data function and its generalized backprojection for image reconstruction in helical cone-beam CT,” Phys. Med. Biol., vol. 49, pp. N383–387, 2004.[32] Y. Zou and X. Pan, “Image reconstruction on PI-lines by use of ltered backprojection in helical cone-beam CT,” Phys. Med. Biol., vol. 49, pp. 2717–2731, 2004. [33] E. Y. Sidky, Y. Zou, and X. Pan, “Minimum data image reconstruction algorithms with shift-invariant ltering for helical, cone-beam CT,” Phys. Med. Biol., vol. 50, pp. 1643–1657, 2005. [34] P. Grangeat, “Mathematical framework of cone-beam 3-D reconstruction via the rst derivative of the Radon transform,” Lecture Note Math., vol. 1497, pp. 66–97, 1992. [35] J. Deng, H. Yu, J. Ni, T. He, S. Zhao, L. Wang, and G. Wang, “A parallel Katsevich algorithm for 3-D CT image reconstruction,” J. Supercomput., vol. 38, pp. 35–47, 2006. [36] J. Yang, X. Guo, Q. Kong, T. Zhou, and M. Jiang, “Parallel implementation of the Katsevish’s FBP algorithm,” Int. J. Biomed. Imag., 2006. [37] S. Zhao and G. Wang, “Feldkamp-type cone-beam tomography in the wavelet framework,” IEEE Trans. Med. Imag., vol. 19, no. 9, pp. 922–929, Sep. 2000. [38] J. Zhu, S. Zhao, H. …… 此处隐藏:7308字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:大学生实习证明(模板)