初中排列组合公式例题.(8)
发布时间:2021-06-07
发布时间:2021-06-07
解:若3堆有序号,则有 · ,但考虑有两堆都是3支,无须区别,故共有 / =9240种。
例29 把12支不同的钢笔分给3人,一人得6支,二人各得3,有几种分法?
解:先分堆:有 / 种。再将这三堆分配给三人,有 种。共有 · / =3 种。
本题亦可用“选位,选项法”,即: =3 。
八、解分排问题—采用直排处理的策略
把n个元素排成前后若干排的排列问题,若没有其他特殊要求,可采取统一排成一排的方法来处理。
例30 两排座位,第一排3个座位,第二排5个座位,若8位学生坐(每人一个座位)。则不同的坐法种数是( )
A、 B、 C、 D、
简析:因8名学生可在前后两排的8个座位中随意入坐,再无其他条件,所以两排座位可看作一排来处理,其不同的坐法种数是 ,故应选D。
九、解“小团体”排列问题——采用先整体后局部策略
对于“小团体”排列问题,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。
例31 三名男歌唱家和两名女歌唱家联合举行一场音乐会,演出的出场顺序要求两名女歌唱家之间恰有一名男歌唱家,其出场方案共有 ( )
A.36种 B.18种 C.12种 D.6种
简析:按要求出场顺序必须有一个小团体“女男女”,因此先在三名男歌唱家中选一名(有 种选法)与两名女歌唱家组成一个团体,将这个小团体视为一个元素,与其余2名男歌唱家排列有 种排法。最后小团体内2名女歌唱家排列有 种排法,所以共有 =36种出场方案,选A。
十、简化计算繁琐类问题——采用递归策略
所谓递归策略,就是先建立所求题目结果的一个递推关系式,再经简化题目条件得出初始值,进而递推得到所求答案。
例32 有五位老师在同一年级的6个班级中,分教一个班的数学,在数学会考中,要求每位老师均不在本班监考,共有安排监考的方法总数是多少?
解:记n元安排即a1、a2、 、an个元素的排列,且满足“ai不在第i位上的方法总数为an。 固定n-1个元素不动的排法是1;
固定n-2个元素不动的排法是 ;
固定n-3个元素不动的排法是 ;
固定1个元素不动的排法是 ·an-1;
an=n!-1- - - ·an-1(n≥3, n∈N)
容易计算得a2=1,由上式递推可得:a3=2,a4=9,a5=44。
因此,共有安排监考的方案总数为44种。
十一、解较复杂的排列问题——采用构造型策略
对较复杂的排列问题,可通过构造一个相应的模型来处理。
例33 某校准备组建一个18人的足球队,这18人由高一年级10个班的学生组成,每个班级至少1人,名额分配方案共有_________种。
简析:构造一个隔板模型。如图,取18枚棋子排成一列,在相邻的每两枚棋子形成的17个间隙中选取9个插入隔板,将18枚棋子分隔成10个区间,第i(1≤i≤10)个区间的棋子数对应第i个班级学生的名额,因此名额分配方案的种数与隔板插入数相等。因隔板插入数为 ,故名额分配方案有 =24310种。
例34 将组成篮球队的12个名额分给7所学校,每所学校至少1个名额,问名额分配方法有多少种? 解:将问题转化成一把排成一行的12个0分成7份的方法数,这样用6块闸板插在11个间隔中,共有 =462