初中排列组合公式例题.(4)

发布时间:2021-06-07

例3 用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?

解:由题意可知,首位、末位是两个特殊位置,“0”是特殊元素,首位可取元素的集合

A={1,2,3,4,5},末位可取元素的集合B={5},B A,用图2表示。

末位上只能取5,有 种取法,首位上虽然有五个元素可取但元素5已经排在末位了,故只有 种不同取法,其余四个位置上有 种不同排法,所以组成的符合题意的六位数有 =96(个)。

说明:这个类型的题目,两个特殊位置上所取的元素组成的集合具有包含关系,先求被包合的集合中的元素在特殊位置上的排列数,再求另一个位置上的排列数,次求其它位置上排列数,最后利用乘法原理,问题就可解决。

(3)影响型(两个特殊位置上可取的元素既有相同的,又有不同的。这类题型在高考中比较常见。)

例4 用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?

解:由题意可知,首位和百位是两个特殊位置,“3”是特殊元素。首位上可取元素的集合 A={2,3,4,5},百位上可取元素的集合B={1,2,4,5}。用图3表示。

从图中可以看出,影响型可分成无关型和包含型。①首先考虑首位是3的五位数共有: 个;②再考虑首位上不是3的五位数,由于要比20000大,∴首位上应该是2、4、5中的任一个, 种选择;其次3应排在千位、十位与个位三个位置中的某一个上, 种选择,最后还有三个数、三个位置,有 种排法,于是首位上不是3的大于20000的五位数共有个 。

综上①②,知满足题设条件的五位数共有: + =78个。

二、解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略

解含有约束条件的排列组合问题,应按元素的性质进行分类,按事件发生的连贯过程分步,做到分类标准明确、分步层次清楚,不重不漏。

例5 平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有________个。

简析:按构成矩形的过程可分为如下两步:第一步.先在4条平行线中任取两条,有 种取法;第二步再在5条平行线中任取两条,有 种取法。这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有· =60个。 例6 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少?

解:依题意,共线的三点组可分为三类:两端点皆为顶点的共线三点组共有 =28(个);两端点皆为面的中心的共线三点组共有 =3(个);两端点皆为各棱中点的共线三点组共有 =18(个)。

所以总共有28+3+18=49个。

例7 某种产品有4只次品和6只正品(每只产品均可区分)。每次取一只测试,直到4只次品全部测出为止。求第4只次品在第五次被发现的不同情形有多少种?

解:先考虑第五次测试的产品有4种情况,在前四次测试中包含其余的3只次品和1只正品,它们排列的方法数是6 。依据乘法原理得所求的不同情形有4×6 =576种。

有些排列组合问题元素多,取出的情况也有多种,对于这类问题常用的处理方法是:可按结果要求,分成不相容的几类情况分别计算,最后计算总和。

例8 由数字0,1,2,3,4,5组成没有重复的6位数,其中个位数字小于十位数字的共有 ( )

A、210个 B、300个 C、464个 D、600个

分析:按题意个位数字只可能是0,1,2,3,4共5种情况,符合题的分别有 , , ,, 个。

合并总计,共有 + + + + =300(个)。

故选B。

说明:此题也可用定序问题缩位法求解,先考虑所有6位数: 个,因个位数字须小于个位数字,故所求6位数有( )/ =300(个)。

初中排列组合公式例题.(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219