透壁式通风管_块石复合路基降温效果模型试验及(7)
发布时间:2021-06-06
发布时间:2021-06-06
290 岩 土 工 程 学 报 2015年
258.
[6] 汪双杰, 黄晓明, 陈建兵, 等. 无动力热棒冷却冻土路基研
究[J]. 公路交通科技, 2005, 22(3): 1–4. (WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al. Research on frozen soil subgrade cooling by non-power heat pipe[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 1–4. (in Chinese))
[7] 牛富俊, 马 巍, 赖远明. 青藏铁路北麓河试验段通风管
路基工程效果初步分析[J]. 岩石力学与工程学报, 2003, 22(增刊2): 2652–2658. (NIU Fu-jun, MA Wei, LAI Yuan-ming. Preliminary analysis on engineering effect of ventilation embankment at beiluhe testing section of QingHai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2652–2658. (in Chinese))
[8] 喻文兵, 赖远明, 张学富, 等. 多年冻土区道碴、通风管结
构铁路路基室内试验研究[J]. 岩土工程学报, 2003, 25(4): 436–440. (YU Wen-bing, LAI Yuan-ming, ZHANG Xue-fu, et al. Laboratory experiment study on the ballast and ventilated railway embankment in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 436–440. (in Chinese))
[9] 胡明鉴, 汪 稔, 葛修润, 等. 透壁通风管对青藏铁路路基
的冷却效果试验初探[J]. 岩石力学与工程学报, 2004, 23(24): 4195–4199. (HU Ming-jian, WANG Ren, GE Xiu-run, et al. An experimental study on cooling effect of the perforated ventilation pipes on Qinghai-Tibet railway roadbed[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4195–4199. (in Chinese)) [10] 孙斌祥, 杨丽君, 王 伟, 等. 水平透壁通风管增强封闭
碎石路堤降温的累积效应[J]. 岩土工程学报, 2013, 35(2): 289–295. (SUN Bin-xiang, YANG Li-jun, WANG Wei, et al. Accumulative effect of cooling capability in air-tight crushed rock layer with horizontally embedded perforated ventilation pipes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 289–295. (in Chinese))
[11] 何 平, 程国栋, 马 巍, 等. 块石通风性能实验研究[J].
岩土工程学报, 2006, 28(6): 789–792. (HE Ping, CHENG Guo-dong, MA Wei, et al. Researches on ventilation properties of block stones layer[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 789–792. (in Chinese))
[12] 吴青柏, 赵世运, 马 巍, 等. 青藏铁路块石路基结构的
冷却效果监测分析[J]. 岩土工程学报, 2005, 27(12): 1386
温效果进行了模拟分析,并建立数值模型对复合路基的长期应用效果进行了预测,研究得出如下结论:
(1)单一块石路基模型在风速接近4 m/s的条件下,块石层孔隙中空气流速为0.25 m/s,在复合路基模型试验中,管道内部风速约2.3 m/s,在管道的疏导及强化作用下,块石层内风速达到0.3 m/s,高于单一块石层内空气流速,表明复合路基降温效果优于单一块石路基。
(2)模型试验是在底板和侧向都为隔热边界的条件下进行的,这与现场实际情况有些差异,但从试验结果来看,经多次冻融循环后,通风管–块石复合路基对其下冻土可以起到保护甚至主动降温的作用,可作为今后工程中一种有效保护冻土的路基结构形式。
(3)数值计算结果表明块石层内的空气流速数量-级为101,与室内试验的结果一致,复合路基下冻土上限抬升量为0.5~1.1 m,低温冻土区域逐年增大,进一步说明复合路基对多年冻土的长期降温效果十分显著。 参考文献:
[1] 刘永智, 吴青柏, 张建明, 等. 青藏高原多年冻土地区公路
路基变形[J]. 冰川冻土, 2002, 24(1): 10–15. (LIU Yong-zhi, WU Qing-bai, ZHANG Jian-ming, et al. Deformation of highway roadbed in permafrost regions of the Tibetan plateau[J]. Journal of Glaciology and Geocryology, 2002, 24(1): 10–15. (in Chinese))
[2] 原喜忠. 大兴安岭北部多年冻土地区路基沉陷研究[J]. 冰
川冻土, 1999, 21(2): 155–158. (YUAN Xi-zhong. Study on thaw settlement of subgrade in permafrost regions in the northern part of da hinggan mountains[J]. Journal of Glaciology and Geocryology, 1999, 21(2): 155–158. (in Chinese))
[3] LAI Y M, GUO H X, DONG Y H. Laboratory investigation on
the cooling effect of the embankment with L–shaped thermosyphon and crushed rock revetment in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 143–150.
[4] ZHANG M Y, LAI Y M, DONG Y H. Numerical study on
temperature characteristics of expressway embankment with crushed rock revetment and ventilated ducts in warm permafrost regions[J]. Cold Regions Science and Technology, 2009, 59(1): 19–24.
[5] CHENG G D, SUN Z Z, NIU F J. Application of the roadbed
cooling approach in Qinghai-Tibet Railway engineering[J]. Cold Regions Science and Technology, 2008, 53(3): 241–
上一篇:营销代理合同
下一篇:低电压静电喷涂原理的探讨