多边形的内角和教案1(2)
发布时间:2021-06-06
发布时间:2021-06-06
多边形的内角和教案1
引题:我们学校要准备建造一个各边长为5米,各内角都相等的六边形花坛。问各角是多少度?
2、复习提问,知识巩固。
⑴三角形内角和等于多少度?(180°)
问题2、教室中有四边形的物体吗?是怎样的四边形?内角和分别是多少度? 问题2:你知道长方形和正方形的内角和是多少?
其它四边形的内角和是多少?
问题3、猜一猜:任意一个四边形的内角和可能是多少度?
生:因为任意三角形的内角和为180º,而长方形和正方形的内角和为360º,因此可猜想:任意一个四边形的内角和为360º。
⑵四边形内角和定理以及推导方法。???
3、引入新课
上一节课学习了求四边形内角和的方法,怎样求五边形、六边形 n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。
(二)引导探索,研讨新知
1、以动激趣,浅探求知。
一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。
二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。(误差)
三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。
2、观察联想,启迪思维。
(1)观察引探:观察比较以上结论后,启发提问:“边数少的多边形可以通过量角来求和,如果边数很多那又怎么办?由上述结论可知,多边形的内角和是三角形内角和的若干倍,那么这个倍数与多边形的边数有何关系?能否找出其规律?”(让学生猜想,大胆尝试)
(2)启发联想:我们已经学过求四边形内角和的推导方法,它是以三角形为基础求得的,即连结一条对角线,将四边形分割为两个三角形,其和为180°×2,那么五边形、六边形、 n边形能否依此类推呢?
3、讨论、交流、创新
探索方法(一):
(1)启发连线:依照四边形求内角和的方法,从任一角的顶点作对角线,将多边形分割为