相似三角形中证明技巧

发布时间:2021-06-06

相似三角形中的辅助线添加和相似三角形证明技巧

在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:

一、作平行线 例1. 如图, 的AB边和AC边上各取一点D和E,且使AD=AE,DE延长线与BCABC延长线相交于F,求证:

BFBD

CFCE

B

A C

F F

证明:过点C作CG//FD交AB于G

小结:本题关键在于AD=AE这个条件怎样使用。由这道题还可以增加一种证明线段相等的方法:相似、成比例。

例2. 如图,△ABC中,AB<AC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·

DF=AC·EF。

分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。

ABEF

欲证AB DF AC ,而这四条线段所在的两个三角形显然

ACDF

不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平

行线。

方法一:过E作EM//AB,交BC于点M,则△EMC∽△ABC(两角对应相等,两三角形相似)。

EM AC AB EC 即

EMEC

ABACAB

ACEM

EC

相似三角形中证明技巧.doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219