Localized Components Analysis(6)
时间:2025-07-08
时间:2025-07-08
Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit
524D.Alcantaraetal.
itsrangeto[0,1].Wechoseasinusoidalfthatisnon-zerooverahalf-period:f(x)=0.5(cos(πx
ρ)+1).Largerρselectforgroupsofpointswhichco-varyover
largerspatialextents.Itwassetto0.25inalloftheexperimentsbelow.
Optimization.Ouroptimizationprocedureissimilartothatusedin[7].PCAprovidesaninitialorthonormalbasise,andeverypossiblepairei,ejarero-tatedtogetherinthetwo-dimensionalplanetheyspan.Becausetherotatingpairiskeptorthogonaltoeachotherandstayintheir2Dplane,thebasisre-mainsorthonormalthroughoutoptimization.EachpairisrotatedbytheangleθthatminimizesEvar+λEloc.TheoptimalθisfoundnumericallyusingBrent’smethod[16].NoticethatsinceEvarandElocarebothsummationsoftermsthateachdependsolelyonanindividualei,onlythetermscorrespondingtothecurrentei,ejpairneedtobeupdatedduringoptimization.
Thepairsarerotatedindecreasingorderofshapevariationaccountedfor.Thesetofallei,ejpairsareadjustedrepeatedly,andoptimizationceaseswhenad-justingthemchangestheobjectivefunctionlessthana xedthreshold.Between50and150iterationswererequiredforeachexperimentbelow.
DataPreparation.Weassumethatwearegivenanensembleofnobjects,eachrepresentedbympointsonitsboundary,andthecompatibilitymatrixB.Overalldi erencesinobjectscale,rotationandtranslationovertheensembleareremovedthroughgeneralizedProcrustesalignment[5].Theresultingscaledandaligneddatasetsareusedasinputtotheaboveoptimization.
4Results
Below,wecompareLoCAtoPCA,ICA,andS-PCAonthreedatasets:CCs,colobinemonkeyskulls,andhumerifromvariousprimates2.Foreachbasis,lo-calityisevaluatedvisuallyusingrenderingsoftheentriesineachbasisvector,andthroughlocalitygraphs (seeFigure2).Concisenessofeachbasisisassessed
kquantitativelybychartingn
j=1||vj vj||L2overallk,andmorespeci cally
byrecordingthenumberofeirequiredtocapture90%ofshapevariation,i.e.reducethisreconstructionerrorto10%.
LoCAbehaviordependsstronglyonλ,theparameterthatmodulatesthetradeo betweenconcisenessandlocality.Forλ=0,LoCAreducestoPCA.Forsmallλ,LoCAbasisvectorsaccountingforthehighestamountsofshapevaria-tionresemblePCAbasisvectors,whiletherestofthebasisisclearlylocalized(Figure2).Forlargerλ,allLoCAbasisvectorsarelocal,andthebasesrequiremorebasisvectorstoaccountforshapevariationinthedata.InFigures3,5,and6,LoCAandS-PCAbasisvectorsaredepictedforthesmallestvalueofλforwhichthebaseslackedglobalbasisvectors.S-PCAperformssimilarlytoLoCAforsmallvaluesofλ,inagreementwithearlierS-PCAresults[7].However,S-PCArequiredamuchlargerbasis–morebasisvectorsfor10%reconstructionerror–beforetheglobalbasisvectorsdisappeared;thisislikelyduetothevery2Moviesandlargerimagesareat:http://idav.ucdavis.edu/~dfalcant/loca.html
…… 此处隐藏:856字,全部文档内容请下载后查看。喜欢就下载吧 ……