Localized Components Analysis(2)
时间:2025-05-02
时间:2025-05-02
Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit
520D.Alcantaraetal.
Fig.1.ShapecharacteristicsofcorporacallosacapturedbybasisvectorsgeneratedwithPCAandLoCA.Arrowsstartatpointstracingtheaveragecorpuscallosum;theirmagnitudesindicatethedegreethatpointsmovewhenthecorrespondingshapeparameterisvaried.ThePCAvectorrepresentsacomplex,globalpatternofshapecharacteristicswhiletheLoCAvectorfocusesonthegenu.
bepresentedintermsofasmallnumberofparameters,eachofwhichrepresentsaneasily-graspedaspectofregionshape.Thiscouldpromoteinterpretationsoftheshapedi erenceintermsofdiseasecausesore ects.
Ourgoalistoencourageinterpretabilityofresultsbygeneratingshapepara-meterizationsthatarebothconcise–capturingsalientshapecharacteristicsinasmallnumberofparameters–andspatiallylocalized–accountingfortheshapeofaspatiallyrestrictedsub-regionineachparameter.Thehypothesisunderlyingthispaperisthatspatially-localizedandconciseshapeparameterizationsaremoreintuitiveforendusersbecausetheyallowthemtoconceptualizeobjectshapeintermsasmallnumberofobjectparts,whichareoftena ecteddi eren-tiallybyphysicalphenomena.Intheaboveexample,shapechangeduetodiseaseprocessesisknowntooccurinspatially-localizedbrainsub-regionsinavarietyofdisorders[1].Inaddition,conciseparameterizationsareattractivebecausethestatisticalpoweroftestsonthoseparametersisreducedaslittleaspossiblebycorrectionsformultiplecomparisons[2].
Wefollowthelinearsubspaceparadigmofexpressingeachshapeasalinearcombinationofprototypical,orbasisshapes.Thatis,ifeachshapeisrepresentedasavectorvjofthe2mor3mcoordinatesofmpointssampledfromitsboundary(i.e.,vj=[vj,1,vj,2,···vj,m],vj,k=[xk,yk]for2Dshapes),vjisapproximatedasalinearcombinationofkbasisvectors{e1,e2,···ek}:
vkj=k
i=1αj,i ei
Theshapeparametersarethecoe cientsαj,i.Linearsubspacemethodsareattractivebecausetheirlinearityineiallowsthemtobemanipulatedusingstandardtoolsfromlinearalgebra.
However,linearsubspacemethodsdonotinherentlyencouragelocality.Fig-ure1(left)depictsatypicaleigeneratedbytheclassicallinearsubspacemethod,principalcomponentsanalysis(PCA),appliedtotracingsofthecorpuscallosum(CC),ahumanbrainregion.ThebasisshapesummarizesacomplexpatternofshapecharacteristicsacrosstheentiretyoftheCC.Therefore,ifthecorrespond-ingαidi ersbetweengroups,theexplanationofthegroupdi erenceinphysical
…… 此处隐藏:483字,全部文档内容请下载后查看。喜欢就下载吧 ……