Localized Components Analysis(2)

时间:2025-05-02

Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit

520D.Alcantaraetal.

Fig.1.ShapecharacteristicsofcorporacallosacapturedbybasisvectorsgeneratedwithPCAandLoCA.Arrowsstartatpointstracingtheaveragecorpuscallosum;theirmagnitudesindicatethedegreethatpointsmovewhenthecorrespondingshapeparameterisvaried.ThePCAvectorrepresentsacomplex,globalpatternofshapecharacteristicswhiletheLoCAvectorfocusesonthegenu.

bepresentedintermsofasmallnumberofparameters,eachofwhichrepresentsaneasily-graspedaspectofregionshape.Thiscouldpromoteinterpretationsoftheshapedi erenceintermsofdiseasecausesore ects.

Ourgoalistoencourageinterpretabilityofresultsbygeneratingshapepara-meterizationsthatarebothconcise–capturingsalientshapecharacteristicsinasmallnumberofparameters–andspatiallylocalized–accountingfortheshapeofaspatiallyrestrictedsub-regionineachparameter.Thehypothesisunderlyingthispaperisthatspatially-localizedandconciseshapeparameterizationsaremoreintuitiveforendusersbecausetheyallowthemtoconceptualizeobjectshapeintermsasmallnumberofobjectparts,whichareoftena ecteddi eren-tiallybyphysicalphenomena.Intheaboveexample,shapechangeduetodiseaseprocessesisknowntooccurinspatially-localizedbrainsub-regionsinavarietyofdisorders[1].Inaddition,conciseparameterizationsareattractivebecausethestatisticalpoweroftestsonthoseparametersisreducedaslittleaspossiblebycorrectionsformultiplecomparisons[2].

Wefollowthelinearsubspaceparadigmofexpressingeachshapeasalinearcombinationofprototypical,orbasisshapes.Thatis,ifeachshapeisrepresentedasavectorvjofthe2mor3mcoordinatesofmpointssampledfromitsboundary(i.e.,vj=[vj,1,vj,2,···vj,m],vj,k=[xk,yk]for2Dshapes),vjisapproximatedasalinearcombinationofkbasisvectors{e1,e2,···ek}:

vkj=k

i=1αj,i ei

Theshapeparametersarethecoe cientsαj,i.Linearsubspacemethodsareattractivebecausetheirlinearityineiallowsthemtobemanipulatedusingstandardtoolsfromlinearalgebra.

However,linearsubspacemethodsdonotinherentlyencouragelocality.Fig-ure1(left)depictsatypicaleigeneratedbytheclassicallinearsubspacemethod,principalcomponentsanalysis(PCA),appliedtotracingsofthecorpuscallosum(CC),ahumanbrainregion.ThebasisshapesummarizesacomplexpatternofshapecharacteristicsacrosstheentiretyoftheCC.Therefore,ifthecorrespond-ingαidi ersbetweengroups,theexplanationofthegroupdi erenceinphysical

…… 此处隐藏:483字,全部文档内容请下载后查看。喜欢就下载吧 ……
Localized Components Analysis(2).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219