Localized Components Analysis(3)

时间:2025-05-02

Abstract. We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicit

LocalizedComponentsAnalysis521

termsiscomplex.Figure1(right),bycontrast,showsatypicaleigeneratedbythemethodpresentedbelow;di erencesinthecorrespondingαibetweengroupsgivesrisetoasimplephysicalexplanationintermsofthegenu,theCCsubregionwhoseshapeiscapturedbytheei.

WepresentLocalizedComponentsAnalysis(LoCA),amethodthatopti-mizestheeiforspatiallocalityandconcisenesssimultaneously.Itimprovesonpreviouslinearsubspacemethodsbyexplicitlyoptimizingforlocalizedshapeparametersandbyallowingtheusertomodulatethetradeo betweenlocal-ityandconcisenesswithgreater exibilitythanpreviousmethods.Theresult-ingshapecomponentscouldprovidesuccinctsummariesofspatially-localizedchangestobiomedicalstructuresduetoavarietyofphysicalphenomena;forexample,LoCAcouldprovideaconcisesummaryofthespatially-localizedCCshapechangesthatarethoughttoaccompanydiseasessuchasHIV/AIDS[3].Inprimateevolution,LoCAcouldsummarizetheshapesimilaritiesbetweentheskullsofgeneticallyrelatedspeciesusingafewintuitiveparameters.

WesummarizerelatedtechniquesinSection2,andpresentLoCAinSection3.AthoroughsetofexperimentsinSection4showstheintuitivenessand exibil-itygainedbyLoCAoverestablishedlinearsubspacemethodswhenappliedtohumanCC,colobinemonkeyskulls,andprimatehumeri(upperarm)bones.2RelatedWork

PCAhasbeenusedto ndconcisebasesforshapespacesinmedicalimageanalysis[4],morphometrics[5],computergraphics[6],andmanyothercontexts.InPCA,eiistheitheigenvectorofthecovariancematrixoftheexamplevjvec-tors;therefore,theeiareorthogonalandvkjisthebestk-thorderapproximationofvjundertheL2norm.TwoalgorithmsindependentlynamedSparsePCA(S-PCA)encourageasmanyentriesineitobezeroaspossible,eitherbyiterativelyadjustingthePCAbasis[7]orbyiterativelyconstructingsparseorthogonalvectors[8][9]1.Empiricallytheeioftenrepresentshapeinasmallnumberofspatially-localizedsubregions[9][11].Similarly,whileindependentcomponentsanalysis(ICA)andprincipalfactoranalysis(PFA)donotdirectlyoptimizealocality-relatedobjectivefunctionwhenestimatingei,theyappeartogeneratespatially-localizedcomponentsanyway[12][13].Alternatively,pre-de nedspa-tiallylocatedregionsofinterestcanbeintegratedintoPCA[14].OurapproachisinspiredbyS-PCAandfollowsasimilarstrategyofadjustingtheeiprovidedbyPCA;butweexplicitlyoptimizeforspatially-localized,ratherthansparse,ei.Unlike[14]worksoflocalizedmedialgeometricprimitiveshavethepotentialtocap-turelocalshapeinaconcisesetofparameters[15].Wefeelthatmedialandsurface-basedrepresentationscouldcapturecomplementaryshapeinformation.Wenote,however,thatnetworksofmedialprimitivescanbechallengingtocon-structinanautomatedwayandmaythereforebemorelabor-intensivethantheapproachwepresent.

1Athird,unrelatedSparsePCAsparsi esthevjbeforeapplyingstandardPCA[10].

…… 此处隐藏:950字,全部文档内容请下载后查看。喜欢就下载吧 ……
Localized Components Analysis(3).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219