周爱民《金融工程》第十章期权定价
时间:2025-04-23
时间:2025-04-23
只是一些简单的定价方法,毕竟只是本科生的教材。
《金融工程学基础》第十章期权定价
(返回电子版主页)(返回)周爱民 主编 参编:罗晓波、王超颖、谭秋燕、穆菁、 张绍坤、周霞、周天怡、陈婷婷
南开大学经济学院金融学系
aiminzhou@http://
天津市(300071)1
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
第十章 期权定价 第一节
期权价格的上下限 第二节 二叉树期权定价法 第三节 Black-Scholes模型 第四节 新型期权
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
本章所用到符号SP:期权的行使价格; T:期权的到期时间;
T t :期权距到期日在一年时间中的比率; S t :股票在时刻t的价格; C t :单股股票欧式买权在时刻t的价格; ct :单股股票美式买权在时刻t的价格; Pt :单股股票欧式卖权在时刻t的价格; pt :单股股票美式卖权在时刻t的价格;r:在T时刻到期的投资的无风险利率。
在这一节中,我们将推导单股股票期权价格的上下限,如果不加以特
别的说明,在以后的讨论中。如果期权的价格超过其上限或低于其下限, 限。2013-7-26 3
则套利就有利可图。我们通过消除这些无风险套利机会来确定期权的上下
只是一些简单的定价方法,毕竟只是本科生的教材。
第一节 期权价格的上下限 一、买权与卖权的上限 二、买权与卖权的下限 三、美式买权的提前行使 四、美式卖权的提前行使 五、卖权与买权之间的平价关系
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
一、买权与卖权的上限
(一)买权的上限 (二)卖权的上限
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
(一)买权的上限(一)买权的上限 单股股票(以下讨论同)美式买权或欧式买权的最大价格
S 就是t时刻的股票价格 t ,这是因为单股美式买权或欧式买权的持有者都有权以事先确定的行使价格SP来购买一股股票, 如 果买权的价格大于股票价格,则套利者可以通过购买股票并卖 出买权,轻易地获得无风险利润。可见在任何情况下,期权的
S 价值都不会超过股票的价值。因此,股票价格t
就是买权价格
ct 的上限,即对于美式买权的价格应有不等式: ct ?St ; C t ?St2013-7-26
及欧式买权的价格C t 来说, (10.1.1)6
只是一些简单的定价方法,毕竟只是本科生的教材。
(二)卖权的上限(二)卖权的上限
当然,美式卖权的最大价格应该是其行使价格SP,而欧式期权的最大
价格则应该是其行使价格SP的贴现值。这是因为单股的美式卖权或欧式卖
权的持有者都有权以行使价格SP出售一股股票,如果美式卖权的价格大于
行使价格, 或者欧式卖权的价格大于其行使价格的贴现值, 则套利者可以通
过出售卖权并将所得收入以无风险利率进行投资, 便获得无风险收益。只有 在股票价格S t =0时,卖权才会达到其最大价格。因此,对于美式卖权的价 格 p t 来说,应有:
p t ?SPPt SPe
(10.1.2)
而对于欧式卖权,我们
知道在T时刻期权的价值也不会超过SP。因而卖 权的价格Pt 在t时刻的价值不会超过行使价格SP的贴现值: r (T t )
(10.1.3)7
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
二、买权与卖权的下限
(一)买权的下限 (二)卖权的下限
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
(一)买权的下限(一)买权的下限 对于美式买权, 由于随时都可以行使,因而它的最小价值一定是期权的内在价 值。对于虚值期权和平价期权来说,期权价值的最小值为0;对于实值期权来说, 买权价值的最小值即为其内在价值S T SP 。 如果这一关系不成立的话, 套利者就
可以以低于期权内在价值的价格购入期权,然后马上行使期权来获得无风险利润。 c 因而,对于美式买权的价格t 来说,应该有如下的不等式:
ct Max(0, S T SP)一个资产组合来估计它的下限。 事实上我们可以简单地证明:欧式买权的下限是 式的证明,我们考虑在时刻t时的如下组合: 1股股票的空头及1股相应的欧式买权再加上金额为
(10.1.4)
对于欧式期权来说, 其价格的下限的确定就没有如此明显了, 我们将通过构造
S t SPe r (T t )
。为了给出正 的现金。
SPe r (T t )
2013-7-26
只是一些简单的定价方法,毕竟只是本科生的教材。
rT S 0 ;在时刻 在时刻t=0,这一组合的价值为:C 0 SPe
C t=T, 这一组合的价值为: T SP S T 。 由美式买权下限的结论,我们可以得出欧式买权在时刻t=T的价值为: CT Max(0, S T SP) 。 如果 S T SP ,买权为实值期权,则在T 时刻应行使买权, 股票空头的价值为 S T ,组合在时刻T的价值就为:
组合的价值为0。 这是因为买权的价值为S T SP , 现金价值为SP,
S T SP SP S T 0 。 如果 SP S T ,买权为虚值期权,期权不会被行使,组合会 有一个正的价值: SP S T 。这是因为买权的价值为0,现金价值 为SP,股票空头的价值为 S T ,组合在时刻T的价值就为: 0 SP S T SP S T 。2013-7-26 10