Evolution of Cosmological Density Distribution Function from(5)
时间:2025-07-07
时间:2025-07-07
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
ofcontinuity,theEulerequationandthePoissonequationasfollows:
δ
a
v
a ·{(1+δ)v}=0,1(1)(v· )v+Hv=
xj (x,t),···,(4)
andde nethejointPDF,P(F;t),whichgivesaprobabilitydensitythatthequantityFtakessomevaluesof(δ,v, δ,···)atthetimet.Intermsofthis,theone-pointPDFofthedensity uctuationsP(δ;t)isgivenas
dFiP(F;t),(5)P(δ;t)=
Fi=δ
andsimilarlytheone-pointPDFofthedimensionlessvelocitydivergence,P(θ;t),is
P(θ;t)=dFiP(F;t),
Fi=θ(6)
whereθ≡ ·v/(aH).
Ingeneral,astatisticalcharacterizationofthelarge-scalestructureiscoordinate-dependent.Physically,thereareatleasttwomeaningfulcoordinates,i.e.,theLagrangianandtheEule-riancoordinates.WhiletheEuleriancoordinateis xedonacomovingframe,theLagrangiancoordinateis xedon uidparticlesandfollowsthemotionofthe uid ow.Hence,astimegoeson,highdensityregionsintheLagrangianspaceoccupylargervolumethanthoseintheEulerianspace.WethusconsiderboththeLagrangianPDFPLandtheEulerianPDF
PE,de nedintheLagrangianandtheEuleriancoordinates,qandx,respectively.The
correspondingexpectationvalues, ··· Land ··· Earealsointroduced.
上一篇:咬文嚼字100个常见错字1
下一篇:游泳初级班理论考试题