Evolution of Cosmological Density Distribution Function from(9)
时间:2025-07-07
时间:2025-07-07
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
Aswillbeexplicitlyshowninthenextsection,forinstance,ifthesphericalcollapsemodelisadoptedasLagrangianlocaldynamics,theevolutionoflocaldensityischaracterizedbythesinglevariable,whichcanbesetasthelinearlyextrapolateddensity uctuation,δl.Ifadoptingtheellipsoidalcollapsemodel,thedynamicaldegreesoffreedomreducetothree,representingtheprincipalaxesofinitialhomogeneousellipsoid,λ1,λ2andλ3.Thus,inthisapproximation,thedensity uctuationscanbeexpressedasδ=f(p,t),andusingthisexpression,thevelocity-divergenceisgivenbyθ= (df/dt)/H(1+f)fromtheequationofcontinuity(1).Withinthelocalapproximation,providedtheinitialdistributionfunctionPI(p),theformoftheconditionalmeanscanbecompletelyspeci edanditcanbeexpressed
intermsofthefunctionsPI(p)andf(p,t).
Letus rstconsidertheLagrangianPDF.Inthiscase,theformalexpressionsfortheconditionalmeans[dδ/dt]δand[dθ/dt]θaregivenby
dδdf(p,t)dpiPI(p)PL(δ;t)i 111= δDθ+.(20)dtθdtdtdt
Withtheseexpressions,theevolutionequations(11)and(12)becomeaclosedformandtheconsistentsolutionscanbeconstructedasfollows: PL(δ;t)=dpiPI(p)δD(δ f(p,t)),(21)
PL(θ;t)=
ii dpiPI(p)δDθ+1dt .(22)
Theproofthattheaboveequationsindeedsatisfytheevolutionequations(11)and(12)canbeeasilyshownbydi erentiatingequations(21)and(22)withrespecttotime.ForthePDFofthelocaldensity,onehas
δD(δ f(p,t)) t dfδD(δ f(p,t))=dpiPI(p) δi
fromthepropertyoftheDirac’sdeltafunction.Intheaboveequation,theoperator / δinthelastlinecanbefactoredoutandonecanusetheexpressionofconditionalmean(19).Then,thetimederivativeoftheone-pointPDFPL(δ;t)isrewrittenas dδ
δ
上一篇:咬文嚼字100个常见错字1
下一篇:游泳初级班理论考试题