Evolution of Cosmological Density Distribution Function from(10)
时间:2025-07-07
时间:2025-07-07
We present a general framework to treat the evolution of one-point probability distribution function (PDF) for cosmic density $\delta$ and velocity-divergence fields $\theta$. In particular, we derive an evolution equation for the one-point PDFs and consid
whichcoincideswiththeevolutionequation(11).Asforthevelocity-divergencePDFPL(θ;t),weconsistentlyrecovertheevolutionequation(12)withahelpofequation(20):
1 δDθ+ tdt 1dfdδDθ+=dpiPI(p)H(1+f) θdti = PL(θ;t).(24)dtθ
TheapproximatesolutionoftheEulerianone-pointPDFsarealsoobtainedsimilarly,butthefactor1/(1+δ)mustbeconvolvedwiththeLagrangianPDFduetothepresenceofinertialterm(r.h.sofeqs.[17][18]):
PE(δ;t)=1
δDθ+1
dt 1+f(p,t).(26)
Note,however,thatthesePDFsdonotsatisfythefollowingconditions:normalizationcon-dition 1 E=1andzeromeans δ E=0and θ E=0.Thisfactsimplyre ectsthatthe
conservationofEulerianvolumecannotbealwaysguaranteed,incontrasttotheconserva-tionofLagrangianvolumeensuredbythemassconservation.AspointedoutbyFosalba&Gazta naga(1998a)(seealsoProtogeros&Scherrer1997),were-scaletherelationbetweenδandf(p,t)asfollows:
PI(p)δ=g(p,t)≡NE{1+f(p,t)} 1;NE(t)≡dpi
i
dt
dt =δ1PE(δ;t)1 idpiPI(p)dhdg=
θ1+g
dg
H(1+g)
上一篇:咬文嚼字100个常见错字1
下一篇:游泳初级班理论考试题