A Transforming Metal Nanocomposite with Large Elastic Strain(5)
时间:2025-04-22
时间:2025-04-22
REPORTS
InsitusynchrotronHE-XRDwasusedtocharacterizethedeformationandphasetransfor-mationevolutionsoftheNbnanowiresandtheNiTimatrix,duringthepretreatment(Fig.4A,inset)andthesubsequenttensilecycle(Fig.4C,inset).Afterthepretreatment,theNbnanowiressustainedanelasticcompressivestrainof–1.4%(pointD),whereastheNiTimatrixsustainedanelastictensilestrainof1%(pointE)(Fig.4A).ThereisalsosomeretainedB19′phaseinthematrix(Fig.4B).Theseresultscanbeunderstoodasfollows.Uponremovalofthepretreatmentload,theplasticallydeformedNbnanowires(AtoBinFig.4A)hinderedtherecoveryoftheNiTimatrixbecauseoftheB19′→B2transfor-mation(15,16),whichcausedlargeresidualstrainsinthenanowiresandtheSMAwithsomeretainedB19′phase.Thisdemonstratesthatstrongcouplingbetweenthenanowiresandthematrixtookplaceduringthepretreatment.Inthesubse-quenttensilecycle(Fig.4C),theelasticstrainachievedintheNbnanowireswasupto5.6%(AtoB),consistingofthepreexistingelasticcompressivestrainof–1.4%(OtoB)andanelastictensilestrainof4.2%(OtoA).TheNiTimatrixwentthroughcontinuousSIMTthrough-outthetensileloadingandexhibitedanultralowtangentialeffectivemodulus(Fig.4,DandE)ratherthanundergoinganinitialelasticdefor-mationfollowedbyanabruptSIMTtransition,aswouldoccurinamonolithicSMA(16).ThecontinuousSIMTcanbeascribedtothecontri-butionofthepreexistinginternaltensilestressandtheretainedB19′phaseinthematrix.Uponunloading,theNiTimatrixunderwentareversetransformationfromthestress-inducedmartens-itetotheparentphase(Fig.4,DandE),in-troducingasmallhysteresisinthestress-straincurveresultingfromenergydissipationduringtheprocess.TheexperimentalevidencepresentedabovedemonstratesthattheNbnanowiresex-periencedanultrawideelasticstrainof4.2%–(–1.4%)=5.6%,whichcloselymatchesthephasetransformationstrainof~7%ofNiTi.ThismatchingofelasticandtransformationstrainsresultsintheextraordinarypropertiesofNICSMA.
ReferencesandNotes
1.M.F.Ashby,MaterialsSelectioninMechanicalDesign(Butterworth-Heinemann,Burlington,VT,2005).2.T.Saitoetal.,Science300,464(2003).
3.E.W.Wong,P.E.Sheehan,C.M.Lieber,Science277,1971(1997).
4.T.Zhu,J.Li,Prog.Mater.Sci.55,710(2010).
5.Y.Yue,P.Liu,Z.Zhang,X.Han,E.Ma,NanoLett.11,3151(2011).
6.G.Richteretal.,NanoLett.9,3048(2009).7.L.Tianetal.,NatCommun.3,609(2012).8.K.Kozioletal.,Science318,1892(2007).
9.D.A.Waltersetal.,Appl.Phys.Lett.74,3803(1999).10.Y.Dzenis,Science319,419(2008).
11.P.Podsiadloetal.,Science318,80(2007).
12.J.N.Coleman,U.Khan,Y.K.Gun'ko,Adv.Mater.18,
689(2006).
13.L.Thillyetal.,ActaMater.57,3157(2009).14.V.Vidaletal.,Scr.Mater.60,171(2009).
15.K.Otsuka,C.M.Wayman,Eds.,ShapeMemoryMaterials
(CambridgeUniv.Press,Cambridge,1998).
16.K.Otsuka,X.Ren,Prog.Mater.Sci.50,511(2005).17.S.Ogata,J.Li,S.Yip,Science298,807(2002).
18.M.Piao,S.Miyazaki,K.Otsuka,Mater.Trans.Jpn.Inst.
Met.33,337(1992).
19.SeesupplementarymaterialsonScienceOnline.20.C.C.Ayd ner,D.W.Brown,N.A.Mara,J.Almer,
A.Misra,Appl.Phys.Lett.94,031906(2009).
21.L.Thillyetal.,Appl.Phys.Lett.88,191906(2006).22.C.Scheuerlein,U.Stuhr,L.Thilly,Appl.Phys.Lett.91,
042503(2007).
23.M.Niinomi,M.Nakai,Int.J.Biomater.2011,1(2011).24.M.Niinomi,Metall.Mater.Trans.APhys.Metall.Mater.
Sci.33,477(2002).
25.D.C.Hofmannetal.,Nature451,1085(2008).Acknowledgments:WethankG.H.Wu,H.B.Xu,andY.F.ZhengforvaluablediscussionsonthedeformationmechanismofNICSMA.ThisworkissupportedbythekeyprogramprojectofNationalNaturalScienceFoundationofChina(NSFC)(51231008),theNational973programsofChina(2012CB619400and2009CB623700),andthe
NSFC(51071175,51001119,50831001,and10825419).J.L.alsoacknowledgessupportbyNSFDMR-1008104andDMR-1120901.X.D.H.acknowledgessupportbytheBeijingHigh-levelTalents(PHR20100503),theBeijingPXM201101420409000053,andBeijing211project.
D.E.B.acknowledgessupportbytheInstituteforNanoScience,Engineering,andTechnology(INSET)ofNorthernIllinois
eoftheAdvancedPhotonSourcewassupportedbytheU.S.DepartmentofEnergy,OfficeofScience,undercontractno.DE-AC02-06CH11357.
SupplementaryMaterials
/cgi/content/full/339/6124/1191/DC1MaterialsandMethodsFigs.S1toS12References(26–30)
9August2012;accepted10January201310.1126/science.1228602
TerrestrialAccretionUnderOxidizingConditions
JulienSiebert,1*JamesBadro,2DanieleAntonangeli,1FrederickJ.Ryerson2,3
Theabundanceofsiderophileelementsinthemantlepreservesthesignatureofcoreformation.
Onthebasisofpartitioningexperimentsathighpressure(35to74gigapascals)andhightemperature(3100to4400kelvin),wedemonstratethatdepletionsofslightlysiderophileelements(vanadiumandchromium),aswellasmoderatelysiderophileelements(nickelandcobalt),canbeproducedbycoreformationundermoreoxidizingconditionsthanpreviouslyproposed.Enhancedsolubilityofoxygeninthemetalperturbsthemetal-silicatepartitioningofvanadiumandchromium,precludingextrapolationofpreviousresults.WeproposethatEarthaccretedfrommaterialsasoxidizedasordinaryorcarbonaceouschondrites.Transferofoxygenfromthemantletothecoreprovidesamechanismtoreducetheinitialmagmaoceanredoxstatetothatofthepresent-daymantle,reconcilingtheobservedmantle
vanadiumandchromiumconcentrationswithgeophysicalconstraintsonlightelementsinthecore.hedepletionofsiderophile(i.e.,“iron-loving”)elementsinEarth’smantlerelativetochondritescanconstraintheredoxstateofaccretingmaterialsduringterrestrialaccretionandcoredifferentiation(1–4).Forexample,metal-InstitutdeMinéralogieetdePhysiquedesMilieuxCondensés,UniversitéPierreetMarieCurie,UMRCNRS7590,InstitutdePhysiqueduGlobedeParis,75005Paris,France.2InstitutdePhysiqueduGlobedeParis,UniversitéParisDiderot,75005Paris,France.3LawrenceLivermoreNationalLaboratory,Livermore,CA94551,USA.
*Towhomcorrespondenceshouldbeaddressed.E-mail:julien.siebert@impmc.upmc.fr
1
T
silicatepartitioningexperimentsatatmospher-icpressureindicatethattheobserveddepletionofslightlysiderophileelements(SSEs)suchasVandCrcanonly …… 此处隐藏:5390字,全部文档内容请下载后查看。喜欢就下载吧 ……
上一篇:幼儿园中班上学期老师评语
下一篇:幼儿园开学第一天心得