中考数学压轴题详解—圆1(5)
时间:2025-07-11
时间:2025-07-11
(3)Sn
12
n 1
π2
n 1
(n为正整数). ··················· 10分
3 (1) 证明: 如图,
∵ 点I是△ABC的内心, ∴ ∠BAD=∠CAD,∠ABI=∠CBI. ………………2分 ∵ ∠CBD=∠CAD, ∴ ∠BAD=∠CBD. ……………………………3分 ∴ ∠BID=∠ABI+∠BAD =∠CBI+∠CBD=∠IBD. ∴ ID=BD. ………………………5分 (2)解:如图, ∵∠BAD=∠CBD=∠EBD, ∠D=∠D, ∴ △ABD∽△BED. …………………………7分
∴
BDDE
ADBD
. ∴
AD DE BD
2
ID
2
. …………………8分
∵ ID=6,AD=x,DE=y,∴ xy=36. ………………9分 又∵ x=AD>ID=6, AD不大于圆的直径10, ∴ 6<x≤10. ∴
的中点, 4 (1)证明:∵C是劣弧BD
∴ DAC CDB. ·········································· 1分 而 ACD公共,
∴△DEC∽△ADC. ······································· 3分
y
与x的函数关系式是y
36x
.(6
x≤10
) …………………………10分
说明:只要求对xy=36与6<x≤10,不写最后一步,不扣分.
(2)证明:连结OD,由⑴得
DC
ACDC∵CE 1.AC AE EC 2 1 3,
EC
,
∴DC2 AC EC 3 1 3 .
∴DC
.··········································································································· 4分
由已知BC DC AB是⊙O的直径,
∴ ACB 90 ,
∴AB AC CB 3
2
2
2
2
2
12.
∴AB
∴OD OB BC DC , ∴四边形OBCD是菱形. ∴DC∥AB,DC AB, ∴四边形ABCD是梯形. ················································ 5分 法一:
过C作CF垂直AB于F,连结OC
,则OB BC OC ∴ OBC 60 . ······································································································ 6分 ∴sin60
CFBC
,CF BC sin60
12 3
2
32
,
4
∴S梯形ABCD=
12
CF
AB+DC =
2
······································· 7分
法二:(接上证得四边形ABCD是梯形)
又DC∥AB ∴AD BC,连结OC,则△AOD,△DOC和△
OBC的等边三角形 6分 ∴△AOD≌△DOC≌△OBC,
京翰教育1对1家教 /
上一篇:a2012继续教育计算机作业丽丽
下一篇:化学竞赛热点 晶体结构