应用scikit-learn做文本分类
时间:2026-01-15
时间:2026-01-15
应用scikit-learn做文本分类
分类: Data Mining Machine Learning Python2014-04-13 20:53 12438人阅读 评论(16) 收藏 举报
文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢!
嗯,说正文。20newsgroups官网上给出了3个数据集,这里我们用最原始的。
分为以下几个过程:
加载数据集 提feature 分类
o Naive Bayes o KNN
o SVM
聚类
说明: scipy官网上有参考,但是看着有点乱,而且有bug。本文中我们分块来看。
Environment:Python 2.7 + Scipy (scikit-learn)
1.加载数据集
1. #first extract the 20 news_group dataset to /scikit_learn_data
2. from sklearn.datasets import fetch_20newsgroups
3. #all categories
4. #newsgroup_train = fetch_20newsgroups(subset='train')
5. #part categories
6. categories = ['comp.graphics',
7. 'comp.os.ms-windows.misc', 8. 'comp.sys.ibm.pc.hardware',
9. 'comp.sys.mac.hardware',
10. 'comp.windows.x'];
11. newsgroup_train = fetch_20newsgroups(subset = 'train',categories = categories);
可以检验是否load好了:
[python] view plaincopy
1. #print category names
2. from pprint import pprint
3. pprint(list(newsgroup_train.target_names))
结果:
['comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x']
2. 提feature: 刚才load进来的newsgroup_train就是一篇篇document,我们要从中提取feature,即词频啊神马的,用fit_transform
Method 1. HashingVectorizer,规定feature个数 [python] view plaincopy
1. #newsgroup_train.data is the original documents, but we need to extract the
2. #feature vectors inorder to model the text data
3. from sklearn.feature_extraction.text import HashingVectorizer
4. vectorizer = HashingVectorizer(stop_words = 'english',non_negative = True,
5. n_features = 10000)
6. fea_train = vectorizer.fit_transform(newsgroup_train.data)
7. fea_test = vectorizer.fit_transform(newsgroups_test.data);
8.
9.
10. #return feature vector 'fea_train' [n_samples,n_features]
11. print 'Size of fea_train:' + repr(fea_train.shape)
12. print 'Size of fea_train:' + repr(fea_test.shape)
13. #11314 documents, 130107 vectors for all categories
14. print 'The average feature sparsity is {0:.3f}%'.format(
15. fea_train.nnz/float(fea_train.shape[0]*fea_train.shape[1])*100);
结果:
Size of fea_train:(2936, 10000)
Size of fea_train:(1955, 10000)
The average feature sparsity is 1.002%
因为我们只取了10000个词,即10000维feature,稀疏度还不算低。而实际上用
TfidfVectorizer统计可得到上万维的feature,我统计的全部样本是13w多维,就是一个相当稀疏的矩阵了。
**************************************************************************************************************************
上面代码注释说TF-IDF在train和test上提取的feature维度不同,那么怎么让它们相同呢?有两种方法:
Method 2. CountVectorizer+TfidfTransformer
让两个CountVectorizer共享vocabulary: [python] view plaincopy
1. #----------------------------------------------------
2. #method 1:CountVectorizer+TfidfTransformer
3. print '*************************\nCountVectorizer+TfidfTransformer\n********
*****************'
4. from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
5. count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5);
6. counts_train = count_v1.fit_transform(newsgroup_train.data);
7. print "the shape of train is "+repr(counts_train.shape)
8.
9. count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_);
10. counts_test = count_v2.fit_transform(newsgroups_test.data);
11. print "the shape of test is "+repr(counts_test.shape)
12.
13. tfidftransformer = TfidfTransformer();
14.
15. tfidf_train = tfidftransformer.fit(counts_train).transform(counts_train);
16. tfidf_test = tfidftransformer.fit(counts_test).transform(counts_test);
结果:
*************************
CountVectorizer+TfidfTransformer
*************************
the shape of train is (2936, 66433)
the shape of test is (1955, 66433)
Method 3. TfidfVectorizer
让两个TfidfVectorizer共享vocabulary: [python] view plaincopy
1. #method 2:TfidfVectorizer
2. print '*************************\nTfidfVectorizer\n*************************
'
3. from sklearn.feature_extraction.text import TfidfVectorizer
4. tv = TfidfVectorizer(sublinear_tf = True,
5. max_df = 0.5,
6. stop_words = 'english');
7. tfidf_train_2 = tv.fit_transform(newsgroup_train.data);
8. tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);
9. tfidf_test_2 = tv2.fit_transform(newsgroups_test.data);
10. print "the shape of train is "+repr(tfidf_train_2.shape)
11. print "the shape of test is "+repr(tfidf_test_2.shape)
12. analyze = tv.build_analyzer()
13. tv.get_feature_names()#statistical features/terms
结果:
*************************
TfidfVectorizer
*************************
the shape of train is (293 …… 此处隐藏:6699字,全部文档内容请下载后查看。喜欢就下载吧 ……