指数函数与对数函数基本知识点

时间:2026-01-17

这是关于高中高考指数函数与对数函数的基本知识点总结,希望可以给正在高考的学生提供一些帮助。

真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,

底数则要大于0且不为1

对数函数的底数为什么要大于0且不为1?

【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)】

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把loge N 记为In N. 根据对数的定义,可以得到对数与指数间的关系:

当a 〉0,a≠ 1时,a^x=N→X=logaN。

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:

负数和零没有对数;

loga 1=0 loga a=1 (a为常数)

对数的定义和运算性质 一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。

底数则要>0且≠1 真数>0

对数的运算性质:

当a>0且a≠1时,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(5) a^(log(b)n)=n^(log(b)a) 证明:

设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

(6)对数恒等式:a^log(a)N=N;

log(a)a^b=b

(7)由幂的对数的运算性质可得(推导公式)

1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M

2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M

3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M

4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,

这是关于高中高考指数函数与对数函数的基本知识点总结,希望可以给正在高考的学生提供一些帮助。

log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(m/n)log(a)M

5.log(a)b×log(b)c×log(c)a=1

对数与指数之间的关系

当a>0且a≠1时,a^x=N x=㏒(a)N

对数函数 右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1) 对数函数的定义域为大于0的实数集合。

(2) 对数函数的值域为全部实数集合。

(3) 函数图像总是通过(1,0)点。

(4) a大于1时,为单调增函数,并且上凸;a小于1大于0时,函数为单调减函数,并且下凹。

(5) 显然对数函数无界。

对数函数的常用简略表达方式:

(1)log(a)(b)=log(a)(b)

(2)lg(b)=log(10)(b)

(3)ln(b)=log(e)(b)

对数函数的运算性质:

如果a〉0,且a不等于1,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n属于R)

(4)log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)

对数与指数之间的关系

当a大于0,a不等于1时,a的X次方=N等价于log(a)N=x

log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)

换底公式 (很重要)

log(a)(N)=log(b)(N)/log(b)(a)= lnN/lna=lgN/lga

ln 自然对数 以e为底 e为无限不循环小数(约为2.71828)

lg 常用对数 以10为底

对数函数的常用简略表达方式

(1)常用对数:lg(b)=log(10)(b)

(2)自然对数:ln(b)=log(e)(b)

e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义

这是关于高中高考指数函数与对数函数的基本知识点总结,希望可以给正在高考的学生提供一些帮助。

对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数.

性质

定义域求解:对数函数y=loga x 的定义域是{x ︳x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需满足{x>0且x≠1} 。

{2x-1>0 =〉x>1/2且x≠1,即其定义域为 {x ︳x>1/2且x≠1}值域:实数集R 定点:函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数,并且上凸;

0<a<1时,在定义域上为单调减函数,并且下凹。

奇偶性:非奇非偶函数,或者称没有奇偶性。

周期性:不是周期函数

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正,底真异对数负.

数学术语

这是关于高中高考指数函数与对数函数的基本知识点总结,希望可以给正 …… 此处隐藏:2982字,全部文档内容请下载后查看。喜欢就下载吧 ……

指数函数与对数函数基本知识点.doc 将本文的Word文档下载到电脑

    精彩图片

    热门精选

    大家正在看

    Copyright © 2023-2025 学科文库 版权所有
    本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
    客服QQ:370150219 邮箱:370150219@qq.com
    苏ICP备16052595号-5

    × 游客快捷下载通道(下载后可以自由复制和排版)

    限时特价:4.9 元/份 原价:20元

    支付方式:

    开通VIP包月会员 特价:19元/月

    注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
    微信:fanwen365 QQ:370150219