高考数学解析几何题型和解法
时间:2025-07-11
时间:2025-07-11
很有价值
解析几何问题的题型与方法
一、知识整合
高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。 其命题一般紧扣课本,突出重点,全面考查。选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化。 ...............1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.
2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.
3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程:(x a)2 (y b)2 r2(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:x2 y2 Dx Ey F 0,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程
x rcos
(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
y rsin
5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.
二、近几年高考试题知识点分析
2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.
1.选择、填空题
1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
例1 (04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2(04辽宁)已知点F1(
2,0)、F2(2,0),动点P满足|PF2| |PF1| 2. 当
很有价值
点P的纵坐标是
1
时,点P到坐标原点的距离是 2
3(A) (B) (C)3
22
(D)2
1.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查
天津文)若过定点M( 1,0)且斜率为k的直线与圆x 4x y 5 0在第
2
2
例3(04
一象限内的部分有交点,则k的取值范围是 (A
)0
k (B
) k 0
(C
)0 k (D)0 k 5
2.解答题
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
1
例4(04江苏)已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常
2
数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M.
,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.
x2y2
解:(I)设所求椭圆方程是2 2 1(a b 0).
ab
由已知,得 c m,
c1
, 所以a 2m,b m. a2
x2y2
1 故所求的椭圆方程是22
4m3m
(II)设Q(xQ,yQ),直线l:y k(x m),则点M(0,km)
当 2时,由于F( m,0),M(0,km),由定比分点坐标公式,得
0 2m2mkm 01 ,yQ km.1 231 23
4m2k2m2
2mkm
又点Q( ,)在椭圆上,所以2 2 1.
334m3m
解得k 26, 0 ( 2) ( m)km当MQ 2QF时,xQ 2m,yQ km.
1 21 2xQ
很有价值
4m2k2m2
1,解得k 0. 故直线l的斜率 …… 此处隐藏:6920字,全部文档内容请下载后查看。喜欢就下载吧 ……