必修五不等式知识点&典型例题
时间:2025-07-10
时间:2025-07-10
不等式精品学案
高中数学必修5 第三章 不等式复习
一、不等式的主要性质:
(1)对称性: a b b a (2)传递性:a b,b c a c
(3)加法法则:a b a c b c; a b,c d a c b d (4)乘法法则:a b,c 0 ac bc; a b,c 0 ac bc
a b 0,c d 0 ac bd (5)倒数法则:a b,ab 0
11 ab
(6)乘方法则:a b 0 an bn(n N*且n 1) (7)开方法则:a b 0 a (n N*且n 1)
二、一元二次不等式ax2 bx c 0和ax2 bx c 0(a 0)及其解法
1.一元二次不等式先化标准形式(a化正)2.常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:“大鱼”吃两边,“小鱼”吃中间
三、均值不等式
1.均值不等式:如果a,b是正数,那么
a b
ab(当且仅当a b时取" "号). 2
2、使用均值不等式的条件:一正、二定、三相等
不等式精品学案
a2 b2a b2
3、平均不等式:(a、b为正数),即(当a = b时取等) ab
1122
ab
四、含有绝对值的不等式
1.绝对值的几何意义:|x|是指数轴上点x到原点的距离;|x1 x2|是指数轴上x1,x2两点间的距离
a 0 a
代数意义:|a| 0 a 0
a a 0
2、如果a 0,则不等式:
|x| a|x| a
x a或x a |x| a a x a
|x| a
x a或x a a x a
4、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号
五、其他常见不等式形式总结:
①分式不等式的解法:先移项通分标准化,则
f(x)g(x) 0f(x)f(x)
0 f(x)g(x) 0; 0 g(x)g(x) g(x) 0
②指数不等式:转化为代数不等式
af(x) ag(x)(a 1) f(x) g(x);af(x) ag(x)(0 a 1) f(x) g(x)
③对数不等式:转化为代数不等式
f(x) 0 f(x) 0
logaf(x) logag(x)(0 a 1) g(x) 0 logaf(x) logag(x)(a 1) g(x) 0
f(x) g(x) f(x) g(x)
④高次不等式:数轴穿根法: 奇穿,偶不穿
(x2 3x 2)(x 4)2
例题:不等式 0的解为( )
x 3
A.-1<x≤1或x≥2 B.x<-3或1≤x≤2 C.x=4或-3<x≤1或x≥2 D.x=4或x<-3或1≤x≤2
六、不等式证明的常用方法
做差法、做商法
七、线性规划
1、二元一次不等式(组)表示的平面区域
直线l:Ax By C 0(或 0) :直线定界,特殊点定域。
注意: Ax By C 0(或 0)不包括边界 Ax By C 0( 0)包括边界 2. 线性规划
我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。解决这类问题的基本步骤是:
注意:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;
不等式精品学案
2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。
八、基本不等式练习
1.下列各式中,最小值等于2的是( )
1xyx2 5x x
A. B. C.tan D.2 2
tan yxx2 4
2.若x,y R且满足x 3y 2,则3 27 1的最小值是( ) A
.
.1 .6 D.7 3.设x 0,y 0,A
x
y
x yxy
, B ,则A,B的大小关系是( )
1 x y1 x1 y
A.A B B.A B C.A B D.A B 4.不等式3 5 2x 9的解集为( )
A.[ 2,1)
[4,7) B.( 2,1](4,7] C.( 2, 1][4,7) D.( 2,1][4,7)
5.已知x,y 0,且x2 y2 1,则x y的最大值等于_____________。
12
(x 0)的最小值为_____________。 2x
7.已知不等式x2 ax b 0的解集为(1,2),试求关于x的不等式bx2 ax 1 0的解集。
6.函数f(x) 3x
8.已知集合A x|x2 3x 18 0,B x|(x k)(x k 1) 0 ,若A B ,求实数k的取值
范围
9.已知函数y (m2 4m 5)x2 4(1 m)x 3对任意实数x,函数值恒大于0,求实数m的取值范围。
九、线性规划练习题
不等式精品学案
y x 2 0
1. 不等式组 1表示的平面区域是
x y 2 0 2
( )
A B C D
x 0
2. 已知点P(x,y)满足条件:是常数)若z x 3y取得最大值是8,则k=__________ y x
2x y k 0
(x y 5)(x y) 0
3.求不等式 所表示的平面区域的面积。
0 x 3
x y 2 0
4.已知不等式组 x y 4 0,求下列目标函数的最值或取值范围。
2x y 5 0
(1)求z x 2y 4的最大值。 (2)求z x2 y2 10y 25的最小值。 (3)求z
2y 1
的取值范围。 x 1
不等式精品学案
高中数学必修5第三章不等式典型题
[基础训练A组]
一、选择题(六个小题,每题5分,共30分)
2
1.若 2x 5x 2 0,则4x 4x 1 2x 2等于( )
2
A.4x 5 B. 3 C.3 D.5 4x
2.函数y=log1(x+x+1) (x > 1)的最大值是 ( ) 1
2
A.-2 B.2 C.-3 D.3 3.不等式
3x 1
≥1的解集是 ( ) 2 x
33
≤x≤2} B.{x|≤x <2} 44
3
C.{x|x>2或x≤} D.{x|x<2}
4
A.{x|
4.设a>1>b>-1,则下列不等式中恒成立的是 ( ) A.
1111
B. C.a>b2 D.a2>2b
abab
5.如果实数x,y满足x2+y2=1,则(1-xy) (1+xy)有 ( )
13
和最大值1 B.最大值1和最小值 243
C.最小值而无最大值 D.最大值1而无最小 …… 此处隐藏:3529字,全部文档内容请下载后查看。喜欢就下载吧 ……