初中应用题的解题技巧
时间:2025-06-08
时间:2025-06-08
应用问题的解题技巧(三课时)
教学目标:应用问题是中学数学的重要内容.它与现实生活有一定的联系,它通过量与量的关系以及图形之间的度量关系,形成数学问题.应用问题涉及较多的知识面,要求学生灵活应用所学知识,在具体问题中,从量的关系分析入手,设定未知数,发现等量关系列出方程,获得方程的解,并代入原问题进行验证.这一系列的解题程序,要求对问题要深入的理解和分析,并进行严密的推理,因此对发展创造性思维有重要意义.
重点:解应用问题的技能和技巧.
1.直接设未知元
在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫作直接设未知元法. 例1 某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求参加竞赛的与未参加竟赛的人数及初中一年级的人数.
分析 本例中要求三个量,即参赛人数、未参赛人数,以及初中一年级人数.由已知条件易知,可直接设未参赛人数为x,那么参赛人数便是3x.于是全年级共有(x+3x)人.
由已知,全年级人数减少6人,即(x+3x)-6, ①而未参加人数增加6人时,则参加人数是未参加人数的2倍,从而总人数为
(x+6)+2(x+6).②
由①,②自然可列出方程.
解 设未参加的学生有x人,则根据分析,①,②两式应该相等,所以有方程
(x+6)+2(x+6)=(x+3x)-6,
所以
x+6+2x+12=4x-6,
所以 3x+18=4x-6,
所以 x=24(人).
所以未参加竞赛的学生有24人,参加竞赛的小学生有
3×24=72(人).
全年级有学生
4×24=96(人).