2016高考数学理科二轮复习课件:专题1第二讲 函数、基本初等函数的图象与性质
时间:2026-01-20
时间:2026-01-20
随堂讲义题一 专合集常用、逻辑语用、数与函导数 二第讲函数、 基本等初数的函图与象质性
函
的图象与数质历性来高考是的点重,是也点, 热般以一择题或选空题的形填式行进考查对于.数图 象函的考查体现在个方面:两一识是图二是;用,即图 通函过的图数,象通数形结合的过思想方解决法问题.对 于数的函质,性主要考查数单调性函、偶性、 奇期性,也可周考查能求数的定义函和简单域函的值数 、最值问域.题
例1 判断列下应对否为是 A到 B 函数的. 1()AR,B=={xx|>0,f}:x→=y||; x2()=Z,A=ZB,:fxy=x2→ ;(3)A=ZB,=Z,:f→xy=x ; ()A=4-1,[],1B{0=,f:x→}y0. 思路点=:本题四个拨小题的集合 A 和中 B 都是非空数集的,利用 数的定义,对于集合 函 A中元的素过通应对系判断关 集在合B 中 是否唯一有素与之对元.应
解析:(1) A的中素 0元在 B 中没 对有的应素,元不是 A故 B到的函数 (.2)对 于A 的任意一中整个 x数按,对应照法 则fx:y→ x2=在,B 中 都有一确定唯的数整x 2与对其,应是故 A 到 B函的.数 3(A) 中的元负整素数没平方根,有故在 B 中没有对应的元素,故 不 A 是 到 的B函数. 4()于对A 中 的任意个数一 x,按对照应法则f:x →=y. 在 0 B都有唯一确中的数定0 和对应它故,是A 到 B 函的数.
判
断个一应对则法否构成是函数,先首A看,B是不 非是数集空其次看给,A中的任何一出个值,通x给出过 的对应法,则B中在否是唯有一确定的y与值之对.
应1.已
集知 P合={|0xx≤≤},4M{=|0≤yy≤2},列下 对不表应 示 到 MP 的函数是的C)(1 Ay= x. 22 C y= . 3 1 B.xy =x3 D.y =
解x析:因 按C 对应法则中,集合 P 时中的4 在 合集M 中 有没素与元对应.这
2.已函数 =知1则, =aA)( 1A.4 C1.
x a ·2,x 0, f≥(x=) x-(a ∈R)若, 2,x<0
,[ff-()1]
1B. 2 .2D
析:f(解-1=),2(2f)=a4所以, [ff-()1=4a]1,= 1解得 a= . 4
1 2 判断例函数 fx(=) +ex 在区间(0,∞)+的上调性.单ex 思路点拨:单调性的定义 解.析:法一解设 <x01x2<则, 1 1 f(1x)-f(2)x =ex1+ - xe2+ x1 e e2x 1ex -ex12 =(e 1-exx2)+= (xe1ex2- 1-)ex +1x2 xe1ex· 2
x1ex+-21 =ex1-x(21)- .·x1
∵0<x<x2,1x1∴-x20,<x+12x0.> ∴ex1x2-<1,x1+e2x1,>1>0.x∴ (fx1-)f(x)<02 ∴(f1x<f(x)2) ∴.fx(在)(,0+)上∞增是函数.
1 法二解 对(x)fe=+ 求导,x e
x 112x 得 f′( )x= -ex = x( -e)1 e, e
x当x> 0时 ,e>x0,2x>1,ef′(∴)>x. 0∴(x)在(f0+,)上为增∞函.
数
1)判断(函数的单调性的一般
思路对:于选、择填 题空,若画能图出象一,般数用形合法结;对 于而基本初由函等通过加数减运算、复合而或成函 的数常转,为基化本初等函单数调性判断问题;对 于的析解较复式的杂,导用法或数定义法.
(2)对于函的奇数性偶判的,首先要断函看数定 的义域否是关于点对称原,次其看 f(-x)与再 fx(的关系.) 3()求函数最常值用方法的有单性调法图象、、法 本基等式法不导数法、和换法元.
3.已知f (x)定义是 R 上的奇在数函且, (xf+)4f=x), ( x当∈0(,)时,2(xf=x)+,则 f27)=((A) A-3 C.-. B.3 D1.1
解析:为因 fx+(4=)(x),故ff (x是周)期 4为的周 期数函又因, f为(x是)奇函数故有,f(:7=)f3+(4) =(f)=3(-f14+)f(=1-)=f-1)=(3.故- A.
选
例 分别3出画列函数下图象:的x+ (21y=) ;-1 (x2)=yx|+|;11 |x |3)y(= 2; (4y)=ln1-(x|).
|