九年级数学上册全部学案(青岛版)(5)

时间:2025-04-19

九年级数学上册全部学案(青岛版)

证明:

平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形。 已知: 求证: 证明:

二、应用举例

例题:已知:如图,ABCD中,E、F分别是AD、BC的中点, 求证:BE=DF.

三、随堂练习

已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F. 求证:四边形BEDF是平行四边形.

四、课后小结

平行四边形的判定定理(1)是________________________________________. 平行四边形的判定定理(2)是________________________________________. 五、当堂检测

1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。

2、已知:如图,△ABC,BD平分∠ABC,DE∥BC,

EF∥AC, 求证:BE=CF

九年级数学上册全部学案(青岛版)

1.2平行四边形的判定(2)

审核人:张宏

学习目标:1、在探索平行四边形的判别条件中,理解并掌握用对角线 来判定平行四边形的方法.

2.会综合运用平行四边形的判定方法和性质来解决问题.

3.培养用类比、逆向联想及运动的思维方法来研究问题. 学习重点:理解和掌握平行四边形的判定定理。 学习难点:几何推理方法的应用。 学习过程: 四、 学习新知

已知:如图,平行四边形HGFE中,HF与GE交与点O,HO=OF,GO=OE, 求证:四边形HGFE是平行四边形。

由此,我们可以得到平行四边形的判定方法:平行四边形的

判定定理(3)__________________________________________________________. 五、 应用举例

例题:已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF. 求证:四边形BFDE是平行四边形.

分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明. 证明:

三、随堂练习

1.如图,在四边形ABCD中,AC、BD相交于点O,

(1)若AD=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形; (2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形. 2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.

3.证明:两组对角分别相等的四边形是平行四边形。

四、课后小结 :我们学习了平行四边形的定义,性质、判定。平行四边形的性质和判定尤为重要,同学们要掌握好。

九年级数学上册全部学案(青岛版)(5).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219