等差数列教学设计(通用12篇)(等差数列数学教案)(4)

时间:2025-05-12

例2、在等差数列中,已知=10,=31,求首项与公差d.

解:由,得。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1.等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a=。

2.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。

四、小结

1.等差数列的通项公式:

公差;

2.等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3.判断一个数列是否为等差数列只需看是否为常数即可;

4.利用从特殊到一般的思维去发现数学系规律或解决数学问题.

五、作业:

1、必做题:课本第40页习题2.2第1,3,5题

2、选做题:如何以最快的速度求:1+2+3+???+100=

篇9:等差数列通项公示教学设计

[教学目标]

1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。

2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。通过阶梯性的强化练习,培养学生分析问题解决问题的能力。

3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。

[教学重难点]

1.教学重点:等差数列的概念的理解,通项公式的推导及应用。

2.教学难点:

(1)对等差数列中“等差”两字的把握;

(2)等差数列通项公式的推导。

[教学过程]

一.课题引入

创设情境

引入课题:(这节课我们将学习一类特殊的数列,下面我们看这样一些例子)

(1)、在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:

1682,1758,1834,1910,1986,( )

你能预测出下次观测到哈雷慧星的大致时间吗?判断的依据是什么呢?

(2)、通常情况下,从地面到11km的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。

(3) 1,4,7,10,( ),16,…

(4) 2,0,-2,-4,-6,( ),…

它们共同的规律是?

从第二项起,每一项与前一项的差等于同一个常数。

我们把有这一特点的数列叫做等差数列。

二、新课探究

(一)等差数列的定义

1、等差数列的定义

如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。

(1)定义中的关健词有哪些?

(2)公差d是哪两个数的差?

2、等差数列定义的数学表达式:

试一试:它们是等差数列吗?

(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10…

(2) 5,5,5,5,5,5,…

(3) -1,-3,-5,-7,-9,…

(4) 数列{an},若an+1-an=3

3、等差中顶定义

在如下的两个数之间,插入一个什么数后这三个数就会成为一个等差数列:

(1)、2 ,( ) ,4 (2)、-12,( ) ,0 ( 3 ) a ,( ),b

如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差中项。(二)等差数列的通项公式

探究1:等差数列的通项公式(求法一)

如果等差数列 首项是 ,公差是 ,那么这个等差数列 如何表示? 呢?

根据等差数列的定义可得:

, , ,…。

所以: ,

……

由此得 ,

因此等差数列的通项公式就是: ,

探究2:等差数列的通项公式(求法二)

根据等差数列的定义可得:

……

将以上 -1个式子相加得等差数列的通项公式就是: ,

三、应用与探索

例1、(1) 求等差数列8,5,2,…,的第20项。

(2) 等差数列 -5,-9,-13,…,的第几项是 –401?

(2)、分析:要判断-401是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得 成立,实质上是要求方程 的正整数解。

例2、在等差数列中,已知 =10, =31,求首项 与公差d.

解:由 ,得 。

在应用等差数列的通项公式an=a1+(n-1)d过程中,对an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量,这是一种方程的思想。

巩固练习

1. 等差数列{an}的前三项依次为 a-6,-3a-5,-10a-1,则a =( )。

A. 1 B. -1 C. -2 D. 22.一张梯子最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。求公差d。四、小结

1.等差数列的通项公式:

公差 ;

2. 等差数列的计算问题,通常知道其中三个量就可以利用通项公式an=a1+(n-1)d,求余下的一个量;

3. 判断一个数列是否为等差数列只需看 是否为常数即可;

4. 利用从特殊到一般的思维去发现数学系规律或解决数学问题.

五、作业:

1、必做题:课本第40页习题2.2 第1,3,5题

2、选做题:如何以最快的速度求:1+2+3++100=

高斯说:“请同学们预习下一节:等差数列的前N项和。”

篇10:等差数列通项公示教学设计

【教学目标】

一、知识 …… 此处隐藏:1830字,全部文档内容请下载后查看。喜欢就下载吧 ……

等差数列教学设计(通用12篇)(等差数列数学教案)(4).doc 将本文的Word文档下载到电脑

精彩图片

热门精选

大家正在看

× 游客快捷下载通道(下载后可以自由复制和排版)

限时特价:7 元/份 原价:20元

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219