2018届高考数学(文)专题复习习题:第1部分 专题三(2)
发布时间:2021-06-05
发布时间:2021-06-05
=43sin ⎝
⎛⎭⎪⎫α+π3-3=0, ∴sin ⎝
⎛⎭⎪⎫α+π3=14. ∴sin ⎝ ⎛⎭⎪⎫α+4π3=-sin ⎝
⎛⎭⎪⎫α+π3=-14. 3.在△ABC 中,若3cos 2
A -
B 2+5sin 2A +B 2=4,则tan A ·tan B =( ) A .4
B.14 C .-4
D .-14 解析:选B.由条件得3×cos A -B +12+5×cos C +12
=4,即3cos(A -B)+5cos C =0,所以3cos(A -B)-5cos(A +B)=0,所以3cos Acos B +3sin Asin B -5cos Acos B +5sin Asin B =0,即cos Acos B =4sin Asin B ,所以tan A ·tan B =sin Asin B cos Acos B =14
. 4.已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦
⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( ) A.79
B.13 C .-13 D .-79
解析:选D.cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭
⎪⎫π3+α-1 =2sin 2⎝ ⎛⎭
⎪⎫π6-α-1=2×19-1=-79. 5.已知在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =
π3,b =2acos B ,c =1,则△ABC 的面积等于( ) A.32 B.34