Stress distributions in plasma-sprayed thermal barrier coati(3)
时间:2025-07-14
时间:2025-07-14
Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness
28M.Ahrensetal./SurfaceandCoatingsTechnology161(2002)26–35
Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness
M.Ahrensetal./SurfaceandCoatingsTechnology161(2002)
26–3529
Fig.3.Radialstressatthebottomofthevalleyasafunctionofamplitude(left)andperiodlength(right)ofthesinusoidalroughnessprofile.Dots:FEcalculation,dashedline:analyticalfit.Parametersacc.toEq.(1):sros17MPa,c1sy425MPa,c2s0.004,ps2.3.
thatsrisafunctionofthequotientLyA.ThefitfunctionsareadditionallydepictedinFigs.2and3(dashedlines).ThedependencesofsronAandLcanbeapproximatedwiththesameEq.(1)forbothpeakandvalleylocationbyusingdifferentexponentsandconstants(c1,c2).AccordingtothehigherexponentpwealreadyobtainsaturationofsrforintermediatevaluesofLyAinthecaseofthevalleyposition.Forexample,concerningthedependenceonamplitude(leftdiagramofFig.3)saturationbehaviourisobservedwithincreasingAintheinvestigatedamplituderangewhileinthecaseofthepeakposition(Fig.2)thereisstilladistinctincreaseofsr.
Thefactthattheradialstressis(asagoodapproxi-mation)afunctionofLyAwseeEq.(1)xshowsthatsrdoesnotsimplydependontheradiusofcurvatureofpeakorvalley,respectively.InthiscasesrshouldbeafunctionofL2yAsincetheradiusofcurvatureatthepeaktipandatthebottomofavalleyofasinusoidalinterfaceisgivenbyL2y(4p2A).
Wheninvestigatingtheinfluenceofthecurvatureoftheinterfaceroughnessonthestresslevelsthetwo-concentric-cylindersmodelalreadymentionedissome-timesusedintheliteraturew13,14x.Fromourownanalyticalcalculationsweobtainthefollowingfortheradiallocaldependenceoftheradialstressintheoutershell
B
K111E
2
sr r.sRiCyFDT
1qK2RiyRaDr2R2aG
coatingwrsRa,seeEq.(2)x.Asstatedabovetheradius
ofcurvatureofasinusoidalinterfacewithamplitudeAandperiodlengthLisequaltoL2y(4p2A).FortypicalvaluesAf10mmandLf50mmthisgivesf6mmfortheradiusofcurvature,wellbelowRa.PerformingthesubstitutionRsryRiEq.(2)canbeapproximatedinthecaseRi<Raby:REy2
sr R.sK1C1qF
RiGD
B
(3)
Consideringthestressesdirectlyattheinterface(Rs
0),itcanbeseenthatsrnolongerdependsonRiandhenceisindependentofthecurvatureoftheroughnessprofile.ThisisincontradictiontotheFEresults,whichshowadefinitedependenceofsr(Rs0)onAandL.Itisnotpossibletopredicttheinfluenceofthecurvatureonthestressesattheinterfacebyapplyingthesimpletwo-cylinders-model(usingrealisticvaluesforRiandRa).Obviouslyabondcoatpeakcannotsimplybetreatedasametallicinclusioninaceramicmatrix.Nevertheless,Eq.(3)canbeusedtogaininsightintothelocaldependenceoftheradialstress.Thiswillbeshowninthefollowing.
3.1.2.Radialstressabovepeakandvalleylocations3.1.2.1.Peak.Fig.4showsthelocaldependencesoftheradialstressabovethepeaklocationwhichwereobtainedbyFEcalculationsfordifferentAandL.Theoriginoftheradialco-ordinateRisdirectlypositionedattheBC-topcoatinterfaceattheasperitytip(labelled‘P’inFig.1).InFig.5theresultsareplottedagain,butnownormalisedto1atRs0.
Additionalanalyticalfitsweremadewithsr(R);(1qRyRi)y2accordingtoEq.(3).TheresultsareshowninFig.5.Theplotsrevealthathighlycurvedpeakshavehighstresslevelsdirectlyattheinterfacethatdecreaseoverarathershortdistancetothelevelwithoutinterfaceroughness.IfAisvaried(keepingLconstant)thisisshownmoredistinctlyinFig.5.Inthis
(2)
whereRiandRaaretheradiioftheinnerandoutercylinder,respectively.K1andK2areconstantsdependingonmaterialspropertieswhichareindependentoftem-peratureinthisapproach.Thebond-coatpeakistreatedasa(cylindrical)metallicinclusionwithinaceramicmatrixwhileRirepresentstheradiusofcurvatureatthetipoftheroughnesspeak.Thedistancerismeasuredfromtheaxisofthecylindricalinclusion.Raiscompa-rabletothethicknessofthetopcoat(f300mm)toprovidesr(r) 0whenapproachingthesurfaceofthe
…… 此处隐藏:1767字,全部文档内容请下载后查看。喜欢就下载吧 ……上一篇:操作考试注意要点(参考)2010